教案应明确教学目标,帮助教师和学生集中精力完成学习任务,教案的精心编写可以使课堂内容更加多样化,满足不同学生的需求,下面是28模板网小编为您分享的平行线性质教案5篇,感谢您的参阅。
平行线性质教案篇1
【教学目标】
1、经历平行线的性质:两直线平行,同位角相等的发现过程。
2、掌握平行线的性质:两直线平行,同位角相等。
3、会用两直线平行,同位角相等进行简单的推理和判断,并学会表达。
【教学重点】
平行线的性质:两直线平行,同位角相等。
【教学难点】
例2的'推理过程要用到平行线的判定和性质。
【教学预设】
【活动1】复习引入
1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)
条件 结论
同位角相等, 两直线平行。
内错角相等, 两直线平行。
同旁内角互补, 两直线平行。
2、练习:
(1) 如图①,a、b、c三点在一条直线上。
如果3 =6,那么 ∥ 。( )
如果6 =9,那么 ∥ 。( )
如果1 +2 +3 =180,那么 ∥ 。( )
如果 ,那么be∥cd。( )
(2) 如图②,看图填空:
∵1 =2(已知)
∥ 。( )
又∵2 =3(已知)
∥ 。( )
【活动2】
1、 引入新课的课堂练习:
(1)你们练习本上的横线与横线成什么关系?(平行)
(2)请画出其中二条(二条之间可空若干行),分别用a、b 表示,a∥b,再画一条c分别与a、b相交。
(3)标出一对同位角,用1、2表示,并量一下度数。
平行线性质教案篇2
教学目标:
1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本p21图5。3—1)。
2、学生测量这些角的度数,把结果填入表内。
角∠1∠2∠3∠4∠5∠6∠7∠8
度数
3、学生根据测量所得数据作出猜想。
(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?
(3)图中哪些角是同旁内角?它们具有怎样的数量关系?
4、学生验证猜测。
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5、师生归纳平行线的性质,教师板书。
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,
所以∠1=∠2所以a∥b。
因为a∥b,因为∠2=∠3,
所以∠2=∠3,所以a∥b。
因为a∥b,因为∠2+∠4=180°,
所以∠2+∠4=180°,所以a∥b。
6、教师引导学生理清平行线的`性质与平行线判定的区别。
学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。
7、进一步研究平行线三条性质之间的关系。
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3。
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。
学生仿照以下说理,说出如何根据性质1得到性质3的道理。
8、平行线性质应用。
讲解课本p23例题
三、巩固练习:课本练习(p22)。
四、作业:课本p22。1,2,3,4,6。
平行线性质教案篇3
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:平行线的性质。
教学难点:平行线的性质定理与判定定理的区别。
教学模式:发现教学模式。
教学方法:直观教学法、发现教学法、主体互动法。
教学手段:计算机辅助教学。
教学过程:
教学环节教师活动
学生活动教学意图复习提问
复习提问:判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课
?大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
?提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
?大屏幕】平行线的性质:定理1.两条平行线被第三条直线所截,同位角相等。简言之:两直线平行,同位角相等。
定理2.两条平行线被第三条直线所截,内错角相等。简言之:两直线平行,内错角相等。
定理3.两条平行线被第三条直线所截,同旁内角互补。简言之:两直线平行,同旁内角互补。
?提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆
思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题”与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的'难点。
?提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
?大屏幕】符号语言:(不唯一)
性质定理1.∵l1∥l2∴∠1=∠5(两直线平行,同位角相等)
性质定理1.∵l1∥l2∴∠3=∠5(两直线平行,内错角相等)
性质定理1.∵l1∥l2
∴∠3+∠6=180o(两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
?提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
?大屏幕】规范定理的推导过程。
思考、尝试回答
培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示
范【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠a=100o,∠b=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习【大屏幕】(见附录2)
思考、讨论、解释结论,寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习【大屏幕】巩固练习(见附录3)
积极思考、展开讨论、踊跃回答,循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路【大屏幕】探究题(见附录4)
?备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂小结【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳将本节课知识进行回顾。
布置作业【大屏幕】布置作业:教材p67的4、5;p68的6、7;p69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。
附录1:
如图,请选取条格纸上的任意两条直线l1、l2,
画一条直线l3与这两条平行线相交,标出这些角。度量这些角,把结果填入下表:
各对同位角、内错角、同旁内角的度数之间有什么关系?大胆的去猜想,试着说一说!
附录2:
趣味练习:一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是()
a、先右转80o,再左转100ob、先左转80o,再右转80o
c、先左转80o,再左转100od、先右转80o,再右转80o
附录3:巩固练习:
1、如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?
2、请在括号中填写理由:
①∵∠b=∠3∴ab∥ce()
②∵ab∥ce∴∠a=∠2()
③∵ab∥ce∴∠b+∠bce=180o()
④∵∠a=∠2∴ab∥ce()
3、如图,填空:
①∵ed∥ac(已知)
∴∠1=∠c()
②∵df∥
(已知)
∴∠2=∠bed()
③∵ab∥df(已知)
∴∠3=∠()
④∵ac∥ed(已知)
∴∠=∠
(两直线平行,内错角相等)
4、请结合图形,根据所给定的平行线填入所需的角,并说明理由。(能否找出所有的情况)
①∵ab∥cd
∴∠____=∠_____()
②∵ad∥bc
∴∠____=∠_____()
③∵ae∥cf
∴∠____=∠_____()
附录4:探究题:
如图甲:已知ab∥de,那么∠1+∠2+∠3等于多少度?试加以说明。
当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为多少度?你找到了什么规律吗?
平行线性质教案篇4
【教学目标】
1。经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;
2。感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。
【教学重点】
平行线的性质以及应用。
【教学难点】
平行线的性质公理与判定公理的区别。
【对话设计】
?探索1〗反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0。这两个句子都是正确的。
现在换一个例子:如果两个角是对顶角,那么这两个角相等。它是对的.。反过来,如果两个角相等,这两个角是对顶角。对吗?
再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?
?结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确。
?探索2〗
上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?它还是对的吗?完成p21的探究,写出你的猜想。
?推理举例〗
如果把平行线性质1———"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等"。
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1=∠2。
证明:∵a∥b,
∴∠1=∠3(__________________)。
∵∠3=∠2(对顶角相等),
∴∠1=∠2(等量代换)。
?探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补。请模仿范例写出证明。
如图,已知:直线a、b被直线c所截,且a∥b,
求证:∠1+∠2=180?。
证明:
?探索4〗
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2。根据什么?
(2)若∠1=∠2,可以得到a∥b。根据什么?根据和(1)一样吗?
?练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:
(1)∵a∥b,∴∠1=∠3(___________________);
(2)∵∠1=∠3,∴a∥b(_________________)。
(3)∵a∥b,∴∠1=∠2(__________________);
(4)∴a∥b,∴∠1+∠4=180?
(_____________________________________)
(5)∵∠1=∠2,∴a∥b(___________________);
(6)∵∠1+∠4=180?,∴a∥b(_______________)。
?练习2〗
画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由。
?作业〗
p25。1、2、3、4。
平行线性质教案篇5
教学目的
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点
1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程
一、引入
学生齐答:
1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
学生答:
1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、新课
平行线的性质一:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
怎样说明它的正确性呢?
方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)
已知:如图2-32,直线ab、cd、被ef所截,ab∥cd.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点o作直线a′b′使∠eob′=∠2.
∴a′b′∥cd(同位角相等,两直线平行).
故过o点有两条直线ab、a′b′与已知直线cd平行,这与平行公理矛盾.即假定是不正确的..
∴∠1=∠2.
另证:(同一法)
过∠1顶点o作直线a′b′使∠e0b′=∠2.
∴a′b′∥cd(同位角相等,两直线平行).
∵ab∥cd(已知),且o点在ab上,o点在a′b′上,
∴a′b′与ab重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.
已知:如图2-33,直线ab、cd被ef所截,ab∥cd,
求证:∠3=∠2.
证明:
∵ab∥cd(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.
已知:如图2-34,直线ab、cd被ef所截,ab∥cd.
求证:∠2+∠4=180°.
证法一:
∵ab∥cd(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:
∵ab∥cd(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形abcd,现已残破,只能量得∠a=115°,∠d=100°,你能知道下底的两个角∠b、∠c的度数吗?根据是什么?(如图2-35).
解:∠b=180°-∠a=65°,
∠c=180°-∠d=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,ab∥cd,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,ef过△abc的一个顶点a,且ef∥bc,如果∠b=40°,∠2=75°,那么∠1、∠3、∠c、∠bac+∠b+∠c各是多少度,为什么?
3.如图,已知ad∥bc,可以得到哪些角的和为180°?已知ab∥cd,可以得到哪些角相等?并简述理由.
教后记:.
学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。