平行线教案8篇

时间:2023-07-22 作者:Gourmand

教案是教师常用到的一种文件,是为了让我们的课堂更有纪律性的材料,教师撰写教案的目的是用于课堂教学,下面是28模板网小编为您分享的平行线教案8篇,感谢您的参阅。

平行线教案8篇

平行线教案篇1

教学目标

(1)知识与技能:

探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

(2)过程与方法:

在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

(3)情感态度、价值观:

在课堂练习中,体验几何与实际生活的密切联系。

教学重点

平行线的性质。

教学难点

平行线的性质定理与判定定理的区别。

教学模式

发现教学模式。

教学方法

直观教学法、发现教学法、主体互动法。

教学手段

计算机辅助教学。

教学过程

教学环节

教师活动

学 生活 动

教 学 意 图

复习提 问

复习提问:

判定两直线平行的方法有哪些?怎样用符号语言表述?

思考、回答

了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

?大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

随后同桌同学交换,再次测量、填表。

关注:

对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。

画图、测量、填表

思考、动手尝试,方法可能多种多样

激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。

给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。

【提问】能否将我们发现的结论给予较为准确的文字表述?

总结、表述

锻炼学生的'归纳、表达能力,鼓励学生敢于发表自己的观点。

【大屏幕】平行线的性质:

定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。

定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。

定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。

?提问】讨论这些性质定理与前面所学的判定定理有什么不同?

理解、记忆、思考、讨论、回答

进行文字语言的规范。

避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

?提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

?大屏幕】符号语言:(不唯一)

性质定理1。∵l1∥l2

∴∠1=∠5 (两直线平行,同位角相等)

性质定理1。∵l1∥l2

∴∠3=∠5 (两直线平行,内错角相等)

性质定理1。∵l1∥l2

∴∠3+∠6=180o (两直线平行,同旁内角互补)

思考、一位同学板书。

观察、理解

为今后进一步学习推理打基础,并进行符号语言的规范。

?提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

鼓励学生使用符号语言表述推导过程。

?大屏幕】规范定理的推导过程。

思考、尝试回答

观察

培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

?大屏幕】例:如图是一块梯形铁片的残余部分,量得∠a=100o,∠b=115o,梯形另外两个角分别是多少度?

思考、尝试运用符号语言进行推理。

要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

?大屏幕】(见附录2)

思考、讨论、解释结论

寓教于乐,进一步让学生感受“认识来源于实践”。

?大屏幕】巩固练习(见附录3)

积极思考、展开讨论、踊跃回答

循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

?大屏幕】探究题(见附录4)

?备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

猜测、讨论,寻找规律

使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

课堂小结

?提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

回顾、归纳

将本节课知识进行回顾。

布置

作业

?大屏幕】布置作业:教材p67的4、5;p68的6、7;p69的11、12

课后完成

课后能进一步巩固,鼓励学生去发现身边的数学问题。

平行线教案篇2

在本次活动中,教师应重点关注:

(1)学生从简单的具体实物抽象出相交线、平行线的能力.

(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.

(3)学生学习数学的兴趣.

教师出示剪刀图片,提出问题.

学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.

教师提出问题.

学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.

在本次活动中,教师应关注:

(1)学生画出两条相交线的几何图形,用语言准确描述.

(2)学生能否从角的位置关系上对角进行分类.

(3)学生是否能够正确区分邻补角、对顶角.

(4)学生参与数学学习活动的主动性,敢于发表个人观点.

《相交线与平行线》单元测试题

25.如图,直线ef∥gh,点b、a分别在直线ef、gh上,连接ab,在ab左侧作三角形abc,其中∠acb=90°,且∠dab=∠bac,直线bd平分∠fbc交直线gh于d

(1)若点c恰在ef上,如图1,则∠dba=_________

(2)将a点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由

(3)若将题目条件“∠acb=90°”,改为:“∠acb=120°”,其它条件不变,那么∠dba=_________(直接写出结果,不必证明)

《第五章相交线与平行线》单元测试题

一、选择题(每题3分,共30分)

1、如图1,直线a,b相交于点o,若∠1等于40°,则∠2等于()

a.50°b.60°c.140°d.160°

平行线教案篇3

教学目标

1.经历从性质公理推出性质的过程;

2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

对话探索设计

?探索1反过来也成立吗

过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

?探索2

上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

?探索3

(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

结论:两条平行线被第三条直线所截,同位角相等.

与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

?探索4

如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

现在我们来试一试:如何根据性质1说出性质2成立的道理.

如图,

∵a∥b(已知),

∴∠1=∠3(____________________).

又∠3=________(对顶角相等),

∴∠1=∠2(___________).

以上过程说明了:由性质1可以得出性质2.

?探索5

我们学过判定两直线平行的第三种方法:

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

把这条定理反过来,可以简单说成_____________________.

猜一猜:把这条定理反过来以后,还成立吗?

?练习

p22练习

说一说:求这三个角的度数分别根据平行线的哪一条性质?

?作业

p25.1、2、3

?补充作业

如图:直线a、b被直线c所截,

(1)若a∥b,可以得到∠1=∠2.根据什么?

(2)若∠1=∠2,可以得到a∥b.根据什么?

(注意:(1)、(2)的根据一样吗?)

平行线教案篇4

课时安排说明:

?两条直线的位置关系》共分两课时,我们在第一课时已经学习了在同一平面内两条直线的位置关系、对顶角、余角、补角的定义及其性质;今天我们将要学习第二课时,主要内容是掌握垂直的定义及其表示方法,会借助有关工具画垂线,掌握垂线的有关性质并会简单应用。

一、学生起点分析

学生的知识技能基础:学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识;上一节课又进一步学习了两直线的位置关系、两角互补、互余等概念,这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

学生活动经验基础:在上一节课,通过引导学生走进生活,从身边熟悉的情境出发,使学生经历了从现实生活中抽象出数学模型的过程;让学生通过直观和大量的操作活动,引导学生积极动手、动口、动脑来进行归纳整理;鉴于学生已有充分的知识储备,本课时将继续延续还课堂于学生,在开放的前提下,让学生经历动手画图(或者操作)、合作交流的过程,给学生一个充分发表见解的舞台,激发学生的创新精神,提高学生的自信力,打造高效课堂!

二、教学任务分析

根据七年学生好奇的心理,首先应引导学生走进现实世界,用一双慧眼去发现有关垂直的情境,借助视觉思维的直观性,复习旧知识,提炼新知识,让学生在主动“探索发现”的过程中增进对数学知识的理解,激发他们的创造力,在无形中培养学生的推理能力!根据学生已经具备的知识储备和能力,特制定目标如下:

知识与技能:

(1)会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线。

(2)通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用。

(3)初步尝试进行简单的推理。

过程与方法:经历从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力。善于举一反三,学会运用类比、数形结合等思想方法解决新知识。

情感与态度:激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性。

三、教学过程设计

本课时我遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造。通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节:综合应用,开阔视野;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。

第一环节 走进生活 引入课题

请每位同学提前搜集有关“两条直线的位置关系”的图片,提炼出数学图形,重点关注有关“垂直”的内容,然后小组内交流资料,进行合理分类、整理。

复习两条直线的位置关系

教师提前进行筛选,捕捉出有代表性的题目,课堂上由学生本人主讲,最后概括出有关结论。

巩固练习:教师展示下列图片,学生快速回答:

问题:观察图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?

你还能提出哪些问题

归纳总结

两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线。它们的交点叫做垂足。通常用“⊥”表示两直线垂直。

活动目的:数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中大量存在特殊的相交线——垂直,在比较中发现发现新知,加深了学生对垂直和平行的感性认识,感受垂直 “无处不在”;使学生充分体验到现实世界的美来源于数学的美,在美的享受中进入新知识的殿堂。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中抽象出有价值的数学模型,然后利用现代化教学手段加强直观教学,在展示学生作品中进行师生互动、生生互动,激发学生的学习热情,调动学生的参与意识。

活动注意事项:教师应放手让学生参与,启发引导学生进入角色,组织好学生之间的合作交流。首先要给予学生足够的时间搜寻信息,提炼信息;其次在课堂上应充分展示学生的杰作,在活动中提高学生与他人合作交流的能力,让学生充分发表他们的见解,及时作出恰当的评价,激励学生以满腔热情投入到学习中;最后教师应提炼学生中出现的错误,在辨析中让学生“明辨是非”。如怎样判断两条线段的位置关系?在第三个图中,如果有学生提出a和c有何位置关系,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。如果学生的作品中已经“生成”了“问题一”的内容,教师应因势利导,适时调整预案。

第二环节 动手实践,探究新知

动手画一画1:

工具1:你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?

工具2:如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?

说出你的画法和理由.

工具3:你能用折纸的方法折出互相垂直的直线吗,试试看吧!请说明理由。

活动目的: “条条大路通罗马”,相同的问题可以借助不同的工具不同的方法来解决,让学生的思维得到充分发散,引导学生透过现象看本质。通过画、折等活动,进一步丰富对两条直线互相垂直的认识,掌握有关的符号表示。课改理念之一就是改变学生被动的学习方式,让学生积极主动的投身于“做数学”中。本环节的设置,将问题更加形象生动的呈现在学生面前,让学生在经历思考、实践、猜想,动手验证等过程,不仅加深对“垂直”的理解,而且感受到“做数学“的乐趣,从而享受到成功的喜悦,形成探索新知的内驱力!而学生在相互交流探讨中,可以相互点拨,顺其自然的掌握新知识。对于第2问的最后一种画法,必要时给出示范,并利用量角器等工具进行验证,为今后探索图形的性质积累活动经验。

活动注意事项:要给学生充裕的时间操作、思考。教师应关注学生的画图是否合乎要求,还要及时收集学生一些好的画法进行展示。教师应关注个体差异,关注学习上稍微落后的学生,帮助他们分析产生困难或错误的原因,提前给予点拨,在集体展示时给这部分同学展示的机会,可以极大的调动这部分同学的学习热情,提高自信力!教师还应注意收集错误信息,进行辨析,将易错点消灭在萌芽中!

归纳结论:

点a和直线m的位置关系有两种:点a可能在直线m上,也可能在直线m外。

平面内,过一点有且只有一条直线与已知直线垂直。

活动目的:这是本节课的难点,首先通过让学生画“点和直线的位置关系”,让学生在直观中抽象出“点在直线上和点在直线外”这一数学模型,这是分散难点的有效途径,让学生在看似“盲目”的探究中发现问题的本质,增加继续探究的勇气!问题的设置由易到难,由直观画图到理性思考的过程。学生的学习兴趣在问题串的激发下,逐步高涨。开放的环境让学生拥有了自由发挥的空间。

活动注意事项:教师应关注学生在画图过程中的不良习惯并及时纠正;参与到学生中进行讨论,及时捕捉好的资源,充分利用多媒体进行展示,注重调动学生的积极性!

活动目的:通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略。比较线段的大小,是学生能轻松解决的问题,他们在动手操作中,很容易得出结论,轻而易举地掌握这一重要性质。

活动注意事项:教师应关注学生的画图是否合乎要求,关注学生是否掌握了“比较线段大小”的方法,让学生充分体会“新知识都是由旧知识解决的”这一重要方法,在小组交流期间,教师还应重点帮扶在理解上有困难的学生,让每位学生都学到有价值的数学。

第三环节 学以致用,步步为营

请动手画一画四

如图:一辆汽车在直线形的公路上由a向b行驶,m、n分别是位于公路ab两侧的两所学校。

问题1:汽车行驶时,会对公路两旁的学校造成一定的噪音影响。当汽车行驶到何处时,分别对两个学校影响最大?在图中标出来。

问题2:当汽车由a向b行驶时,在哪一段上对两个学校影响越来越大?越来越小?

问题3:在哪一段对m学校影响逐渐减小而对n学校影响逐渐增大?( 用文字表达)

活动目的:通过一题多问,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。本环节的设置能够很好地锻炼学生的观察、分析、归纳的能力,使数学学习充满了趣味性和挑战性。本题的设置可以较大限度的调动学生的参与热情,学生通过动手画图,就可以将一个较难的题目分解于无形,从而轻而易举的突破难点;本题的设置,为学生掌握解决难题的方法指明了方向。

活动注意事项:教师不仅要引导学生养成画图的好习惯,而且要培养学生善于从复杂的题目中分离出简单的小题目,从而各个击破,化难为易!本题渗透了从特殊到一般,又从一般到特殊的思想方法,只要掌握“点到直线的距离”,多角度地观察图形,再综合运用所学的知识进行分析,就能从千变万化中找到问题的切入点。

第四环节 综合应用,开阔视野

问题1:体育课上老师是怎样测量跳远成绩的?能说说说其中的道理吗?与同伴交流.

问题2:如图已知∠acb=90°,即直线ac bc;若bc=4cm,ac=3cm,ab=5cm,那么点b到直线ac的距离等于 ,点a到直线bc的距离等于 ,a、b两点间的距离等于 。

你能求出点c到ab的距离吗?你是怎样做的?小组合作交流.

问题3:如图—6,点c在直线 ab上,过点c 引两条射线ce、cd,且∠ace=32°,∠dcb=58°,则ce、cd有何位置关系关系?为什么?

活动目的:问题一取材于学生最熟悉的情境,既可以激发学生学习数学的热情,同时又鼓励学生用数学知识来分析解决实际问题,满足他们的好奇心,问题1的设置不仅仅巩固了垂直的定义及其性质,而且让学生进一步领会了数学的建模思想!通过设置问题2和问题3,使学生思维分层递进,突出了本节课的重点,通过变式练习,步步递进,不断完善了新的知识结构,同时让学生体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。问题串的提出,可以满足不同层次学生学习的需要,提出的问题能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革。

活动注意事项:教师要充分发散学生的思维,鼓励学生各抒己见,敢于质疑;要渗透合情说理的方法,进一步培养学生的推理能力。

第五环节 学有所思 反馈巩固

活动目的:该环节是为了提高学生归纳问题的能力,鼓励学生积极表达自己的观点,体现了学生是学习的主人,教师只是一个组织者和引导者。本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系。

活动注意事项:教师一定让学生畅谈自己的切身感受,仔细聆听学生对本节知识的达成度,注意鼓励学生说出自己的困惑,以便进行适时的点拨和强调。

巩固反馈

如图—7中,∠bac=90°,ad⊥bc于点d,则下面结论中正确的有( )个。

①点b到ac的垂线段是线段ab;②线段ac是点c到ab的垂线段;

③线段ad是点a到bc的垂线段;④线段bd是点b到ad的垂线段。

a、1个;b、2个;c、3个;d、4个。

如图—8中, 点o在直线ab上,oe⊥ab于点o,oc⊥od,若∠doe=320,请你求出∠eoc、∠bod的度数,并说明理由。

如图—9中,点o在直线ab上,oc平分∠bod,oe平分∠aod,则oe和oc有何位置关系?请简述你的理由。

活动目的:本环节是为了检验学生对本节课的掌握程度。在测试题的选择上,体现了分层次的原则。题目由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!

活动注意事项:应当堂反馈,针对学生出现的问题及时纠正!

第六环节 布置作业 能力延伸

基础题:书p45页习题 第 1,2,3题

提高题:请学有余力的同学采取合理的方式,搜集整理与本节课有关的“好题”,被选中的同学下节课为全班展示。

活动目的:作业的布置不仅体现了分层次的原则。而且将课内的学习延伸到了课外,给了学生更广阔的提升空间,激励学生为了获得“展示”而积极的投入到学习中,从而使每个学生都能学到了有价值的数学!

活动注意事项:教师一定要将所有学生搜集的题目批阅一遍,给予这部分同学很高的评价,采取“赏识教育”激励更多的学生走向讲台,展示自我;将“好题”除了部分展示外,多余的“好题目”还可以采取“布置作业”的形式供全体同学共享!

四 教学设计反思

首先我通过让学生搜集资料、动手实践等活动,让全体学生通过自主参与知识的过程,主动掌握探求新知的方法,培养了一种积极向上的探究精神,引导学生真正把知识变为自己的学问,以便随时驾驭流动的世界.

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的动手实践、独立探究、合作交流的学习方法,引导学生挖掘生活中的实际素材,能够列举一些具有合理性、科学性、创造性的实例,并辅以语言及书面的表达,使学生经历知识的生成过程,既加深了对所学知识的理解,也培养了他们的创新精神;注重了学生的情感、态度和价值观的培养。

独立思考、学会思考是创新的核心;概括归纳得到猜想和规律,并加以验证,是创新的重要方法。本节课采用教师引导,学生自主探索和小组合作相结合的教学方式。利用多媒体和实物演示等教学设备辅助教学,充分调动学生的积极性,创设和谐、轻松的学习氛围。课程的设置注重以问题串的方式及变式练习,以激发学生探究、解决实际问题的兴趣,并在学生的探索、分析、交流、归纳、类比中突破难点,突出重点!整节课的设置渗透了数学的建模思想。学生是课堂的主人,教师是学生学习的组织者、促进者、合作者。本节课是一个不断提出问题、解决问题的思维过程,是为学生的自主探索与合作交流提供机会,搭建平台的过程。在教学过程中,教师扮演了引导、点评的角色,数学舞台上的“主演”是全体学生!本节课,所有的学生都得到了参与讨论和发表见解的机会,所有的结论和发现都是学生全员参与,热烈讨论,相互启发,思考探索获得的,充分尊重了学生的主体地位!充分利用了问题的情境,增加了教学过程的趣味性和实践性,激发了学生浓厚的学习兴趣,使学生产生了强烈的求知欲望,体验到了成功的喜悦!

平行线教案篇5

一、主题分析与设计

本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

?数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、教学目标

1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、教学重、难点

1、重点:对平行线性质的掌握与应用

2、难点:对平行线性质1的探究

四、教学用具

1、教具:多媒体平台及多媒体课件

2、学具:三角尺、量角器、剪??

五、教学过程

(一)创设情境,设疑激思

1、播放一组幻灯片。

内容:

①供火车行驶的铁轨上;

②游泳池中的泳道隔栏;

③横格纸中的线。

2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)

(二)数形结合,探究性质

1、画图探究,归纳猜想

教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

教师提出研究性问题一:

指出图中的同位角,并度量这些角,把结果填入下表:

教师提出研究性问题二:

将画出图中的同位角任先一组剪下后叠合。

学生活动一:画图————度量————填表————猜想

学生活动二:画图————剪图————叠合

让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

教师提出研究性问题三:

再画出一条截线d,看你的猜想结论是否仍然成立?

学生活动:探究、按小组讨论,最后得出结论:仍然成立。

2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

教师提出研究性问题四:

请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

学生活动:独立探究————小组讨论————成果展示。

教师活动:评价学生的研究成果,并引导学生说理

因为a ∥ b(已知)

所以∠ 1= ∠ 2(两直线平行,同位角相等)

又∠ 1= ∠ 3(对顶角相等)

∠ 1+ ∠ 4=180°(邻补角的定义)

所以∠ 2= ∠ 3(等量代换)

∠ 2+ ∠ 4=180°(等量代换)

教师展示:

平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1、(抢答)课本p13练一练1、2及习题7。2 1、5

2、(讨论解答)课本p13习题7。2 2、3、4

(五)课堂总结:这节课你有哪些收获?

1、学生总结:平行线的性质1、2、3

2、教师补充总结:

⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

(六)作业

学习与评价p5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

六、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

平行线教案篇6

平行线的判定(1)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

2.掌握直线平行的条件,领悟归纳和转化的数学思想

学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

一、探索直线平行的条件

平行线的判定方法1:

二、练一练1、判断题

1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

(2)

(3)

2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.

三、选择题

1.如图3所示,下列条件中,不能判定ab∥cd的是( )

a.ab∥ef,cd∥ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠3

2.右图,由图和已知条件,下列判断中正确的是( )

a.由∠1=∠6,得ab∥fg;

b.由∠1+∠2=∠6+∠7,得ce∥ei

c.由∠1+∠2+∠3+∠5=180°,得ce∥fi;

d.由∠5=∠4,得ab∥fg

四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

五、作业课本15页-16页练习的1、2、3、

5.2.2平行线的判定(2)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展空

间观念,推理能力和有条理表达能力.

毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

学习重点:直线平行的条件的应用.

学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

一、学习过程

平行线的判定方法有几种?分别是什么?

二.巩固练习:

1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.

(第1题) (第2题)

2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.

二、选择题.

1.如图,下列判断不正确的是( )

a.因为∠1=∠4,所以de∥ab

b.因为∠2=∠3,所以ab∥ec

c.因为∠5=∠a,所以ab∥de

d.因为∠ade+∠bed=180°,所以ad∥be

2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )

a.∠2=∠4 b.∠1=∠4 c.∠2=∠3 d.∠3=∠4

三、解答题.

1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

2.已知,如图2,点b在ac上,bd⊥be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.

平行线教案篇7

教学过程

一、目标展示

二、情景导入。

装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

要解决这个问题,就要弄清楚平行的判定。

三、直线平行的条件

以前我们学过用直尺和三角尺画平行线,如图(课本p13图5、2—5)在三角板移动的过程中,什么没有变?

三角板经过点p的边与靠在直尺上的边所成的角没有变。

∠1与∠2是三角板经过点p的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两条直线平行。

符号语言:∵∠1=∠2∴ab∥cd、

如图(课本p145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。

学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。

题组一:

1、叫做平行线。

如图:a与b互相平行,记作,a。

2、在同一平面内,两条直线的位置关系b只有与两种。

3、下列生活实例中:

(1)交通道路上的斑马线;

(2)天上的彩虹;

(3)阅兵队的纵队;

(4)百米跑道线,属于平行线的有。

学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

题组二:

4、通过画图和观察,可得两个平行公理:

①、经过点,一条直线平行于已知直线;

②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。

5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:

①、a与b没有公共点,则a与b;

②、a与b有且只有一个公共点,则a与b;

③、 a与b有两个公共点,则a与b;

6、过一点画已知直线的平行线有()

a、有且只有一条;b、有两条;c、不存在;d、不存在或只有一条

教学设计

1、落实教学常规,践行学校《教师日常教学行为要求》。

2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。

平行线教案篇8

一、教学目标

1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.

2.会用平行线的性质进行推理和计算.

3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.

二、学法引导

1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

三、重点·难点解决办法

(一)重点

平行线的性质公理及平行线性质定理的推导.

(二)难点

平行线性质与判定的区别及推导过程.

(三)解决办法

1.通过教师创设情境,学生积极思维,解决重点.

2.通过学生自己推理及教师指导,解决难点.

3.通过学生讨论,归纳小结.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制投影片.

六、师生互动活动设计

1.通过引例创设情境,引入课题.

2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.

3.通过学生讨论,完成课堂小结.

七、教学步骤

(一)明确目标

掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.

(二)整体感知

以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.

(三)教学过程

创设情境,复习导入

师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

1.如图1,

(1)∵ (已知),∴ ( ).

(2)∵ (已知),∴ ( ).

(3)∵ (已知),∴ ( ).

2.如图2,(1)已知 ,则 与 有什么关系?为什么?

(2)已知 ,则 与 有什么关系?为什么?

图2 图3

3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?

学生活动:学生口答第1、2题.

师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:

[板书]2.6 平行线的性质

?教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.

探究新知,讲授新课

师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

学生活动:学生在练习本上画图并思考.

学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.

?教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.

学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.

提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?

学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.

根据学生的回答,教师肯定结论.

师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.

[板书]两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等.

?教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.

提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.

师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.

学生活动:学生们思考,并相互讨论后,有的同学举手回答.

?教法说明】在前面复习引入的第2题的'基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.

教师根据学生回答,给予肯定或指正的同时板书.

[板书]∵ (已知),∴ (两条直线平行,同位角相等).

∵ (对项角相等),∴ (等量代换).

师:由此我们又得到了平行线有怎样的性质呢?

学生活动:同学们积极举手回答问题.

教师根据学生叙述,板书:

[板书]两条平行经被第三条直线所截,内错角相等.

简单说成:西直线平行,内错角相等.

师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.

师生共同订正推导过程和第三条性质,形成正确板书.

[板书]∵ (已知),∴ (两直线平行,同位角相等).

∵ (邻补角定义),

∴ (等量代换).

即:两条平行线被第三条直线所截,同旁内角互补.

简单说成,两直线平行,同旁内角互补.

师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)

尝试反馈,巩固练习

师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):

如图7,已知平行线 、 被直线 所截:

(1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?

?教法说明】练习目的是巩固平行线的三条性质.

变式训练,培养能力

完成练习(出示投影片3).

如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?

学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.

?教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.

[板书]解:∵ (梯形定义),∴ , (两直线平行,同旁内角互补).∴ .∴ .

变式练习(出示投影片4)

1.如图9,已知直线 经过点 , , , .

(1) 等于多少度?为什么?

(2) 等于多少度?为什么?

(3) 、 各等于多少度?

2.如图10, 、 、 、 在一条直线上, .

(1) 时, 、 各等于多少度?为什么?

(2) 时, 、 各等于多少度?为什么?

学生活动:学生独立完成,把理由写成推理格式.

?教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.

(四)总结、扩展

(出示投影片1第1题和投影片5)完成并比较.

如图11,

(1)∵ (已知),

∴ ( ).

(2)∵ (已知),

∴ ( ).

(3)∵ (已知),

∴ ( ).

学生活动:学生回答上述题目的同时,进行观察比较.

师:它们有什么不同,同学们可以相互讨论一下.

(出示投影6)

学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.

?教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.

巩固练习(出示投影片7)

1.如图12,已知 是 上的一点, 是 上的一点, , , .(1) 和 平行吗?为什么?

(2) 是多少度?为什么?

学生活动:学生思考、口答.

?教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.

八、布置作业

(一)必做题

课本第99~100页a组第11、12题.

(二)选做题

课本第101页b组第2、3题.

作业答案

a组11.(1)两直线平行,内错角相等.

(2)同位角相等,两直线平行.两直线平行,同旁内角互补.

(3)两直线平行,同位角相等.对顶角相等.

12.(1)∵ (已知),∴ (内错角相等,两直线平行).

(2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).

b组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).

∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .

3.平行线的判定与平行线的性质,它们的题设和结论正好相反.