小数的教案优秀5篇

时间:2023-12-11 作者:Mute

教师可以通过不同的教学策略和方法来增加教案的适切性,教案的主要目的是帮助教师组织教学活动,确保课程的连贯性和一致性,28模板网小编今天就为您带来了小数的教案优秀5篇,相信一定会对你有所帮助。

小数的教案优秀5篇

小数的教案篇1

教学目标

1、通过教学、实践使学生自己发现并掌握小数的性质。

2、培养学生的抽象概括能力,动手能力。

3、培养学生善于探索的精神。

复习引入

1、准备题(1)1元=()角=()分

(2)在下面()里填适当的小数。

3角=()元

30分=()元

100毫米=()米

(3)0.4里面有()个0.1

0.40里面有()个0.01

2、引入:今天继续研究小数。

体验发现

1、课件出示例4:

(1)读题

(2)分组准备,讨论。

(3)说出结果。0.3元=0.30元

(4)为什么?

学生阐明自己的观点。

a、0.3元和0.30元都是3角,所以0.3元=0.30元。

b、画图理解。

c、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。

(5)这两个相等的小数,小数部分有什么不同?

提问:小数部分末尾的0添上或去掉,什么变了,什么没变?

(小数变了,小数的大小没有变)。

2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。

(1)学生自主填空。

(2)交流自己的看法,并阐明观点。

(3)汇报自己的结果。

由1分米=10厘米=100毫米,得到0.1=0.10=0.100。

(4)观察板书:

你得到什么结论?学生自由发言。

总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。

理解内涵

1、课件出示例5:

学生自主填空。

提问:这些小数中,哪些0可以去掉?指名回答。

(着力于对小数“末尾”的理解。)

结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

学生尝试做“练一练”第1题。独立完成,集体订正。

2、试一试。

不改变数的大小,把下面各数改写成三位小数。

0.4=()3.16=()10=()

学生自主改写。

交流:(1)改写这三个数时应用了什么知识?

(2)为什么给三个数添上的“0”的个数不同?

(3)“10”是整数,怎样在小数的末尾添上“0”?

给学生充分的交流时间,进一步体验小数性质的应用。

3、练一练第2题。

学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。

巩固练习

练习六的1—5题。

第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0。

第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。

这些练习题使学生在应用中掌握小数的性质。

教学后记

让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。

小数的教案篇2

学习目标:

1、体会小数所表示的意思,理解小数的意义。

2、理解和掌握小数意义。

教学重点:通过练习,体会小数的'意义,知道小数所表示的含义。

教学难点:通过练习,体会小数的意义,知道小数所表示的含义。

教学准备:学生、老师准备计数器、小黑板

教法:小组合作交流法

学法:小组合作学习

教学课时:2课时

学习过程:

一、情景导入,呈现目标

1、你的身高是多少?你会用小数来描述吗?

2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。

二、探究新知(自学后完成下面问题)

1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。

2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。

3、1、11表示()元()角()分。

三、合作探究,当堂训练

1、用数表示下面各图中得涂色部分?(课本第2页第2题)

2、想一想填一填?(学生独立完成)

3、自己画一方格纸,并画出0、1、0、5、0、6?

4、找一找生活中的小数,小组交流,选代表汇报。

四、精讲点拨(根据学生出现的问题进行精讲。)

五、学习收获,自我总结:

1、小组评价:你认为第几小组表现最棒,为什么?

2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。

课后反思:(略)

小数的教案篇3

[教材简析]

这部分内容结合现实的情境,通过自主观察、比较和归纳,引导学生在众多数学现象中体验并发现小数的性质。例4联系学生熟悉的“购学习用品”情境引入,激起学生进行比较的需要,再通过用不同方法对橡皮和铅笔单价的比较,使学生初步体验小数末尾添上0,小数的大小不变。“试一试”则借助直尺图使学生再次体验小数末尾去掉0,小数的大小不变。在此基础上,引导学生综合、归纳两组等式的特点,从而发现小数的性质。例5及相应的“试一试”则是突出小数性质内涵—— “0”在小数末尾的专项教学,同时学习应用小数的性质,进行化简和改写小数的方法。

[教学目标]

1、使学生在现实的情境中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质改写小数。

2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。观察、比较、抽象概括能力,

3、在活动中使学生初步感悟数学知识间的内在联系,同时渗透事物在一定情况下可以相互转化的观点。

[教学过程]

一、复习旧知,引发冲突

1、谈话:数的王国里有许多神奇的现象,如不起眼的“0”,表示什么意思?(一个也没有)别小看这个“0”,它的作用可大着呢。看,在整数5的末尾添上一个0,这个数发生了什么变化?添上两个0呢?(屏幕依次出示一组数:5,50,500)

我们再从右往左看,500去掉一个0,发生了什么变化?

2、引发猜想:如果在一个小数的末尾添上0,或者去掉0,小数的大小又会怎样?猜猜看。(学生自由发表,可能出现两种意见:①受整数末尾添“0”的思维定势,认为小数大小也会随之变化。②由钱数等生活经验认为小数大小不变)

谁的猜想正确?我们可以用什么方法证明?(举些例子)

[设计意图:从对“整数末尾添上或去掉‘0’引起大小变化”的思考,进而引导学生关注小数末尾的0,引发猜想。此时的猜想是一种直觉思维,可能两种意见谁也说服不了对方,目的在于通过冲突激起学生进一步探索的欲望。]

二、实例作证,体验小数性质的合理

1、创设情境,初步感知

(1)创设购物情境:两位同学去书店购买学习用品后在交流购物情况:小明:“我买1枝铅笔用了0.3元。”小芳:“我买1块橡皮用了0.30元。”你从图中能获取哪些信息?

(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后可以和同桌交流。

(3)学生活动后组织全班交流,可能出现如下的比较方法:

①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元。

②用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。

③结合计数单位理解:0.3是3个0.1,也就是30个0.01,所以0.3=0.30。

(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。

教师引读0.3元=0.30元,从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。

[设计意图:这里选取学生熟悉的购物题材作为研究对象,一方面学生凭借一定的生活经验,能够判断0.3元=0.30元,“知其必然”。同时,学生借助已有的知识经验又能“知其所以然”,运用多种方法自主验证0.3元=0.30元。在此基础上通过引读体验,使学生初步感悟小数末尾添0与小数大小的关系。]

2、试一试,加深体验

谈话:看来刚才的猜想二有些道理。当然,仅仅用一个例子证明是不够的,还得找些其他例子进一步研究,看看这是否是普遍的规律。

(1)出示一把有刻度的学生尺,你能比较出0.100米、0.10米、0.1米的大小吗?给学生一定的思考时间。部分学生可能有困难,随后出示书上填空,看图填一填,再比较。

(2)交流比较方法:说说你是怎样比较的?

可能出现如下的方法:①结合直尺图说明:由100毫米=10厘米=1分米,得到0.100米=0.10米=0.1米。你还能用其它方法来证明吗?②用计数单位说明。0.100是100个0.001,就是10个0.01,也就是1个0.1。

(3)感知与体验:教师引读:0.100米=0.10米=0.1米,小数是相等的。从左往右看,小数末尾怎样变化,小数大小也不变?

使学生初步体验小数的末尾去掉“0”,小数的大小不变。

[设计意图:“为什么去掉0.100米末尾的一个0、两个0,小数依然相等?”这是学生思维受阻、理解较为困难的地方。借助直观的直尺和小数计数单位等相关已有经验,学生能发现0.100米、0.10米和0.1米之间的关系,这就为小数性质合理性的体验提供了另一素材。通过引读使学生体验小数末尾去掉0和小数大小的关系。这就为下一环节的总结概括作了必要的认知准备。]

3、总结体验,概括表达

上面的两个例子,小数大小都没变。从左往右看,小数在怎样的情况下,大小是不变的?把你的想法和小组里的同学说一说。

小组交流后组织全班交流。在此基础上引导学生把两次的发现用一句话概括:小数的末尾添上“0”或去掉“0”,小数的大小不变。这就是小数的性质。

刚才我们是从左往右观察,得到了小数的性质。那么从右往左看,你又能发现什么?

4、突出“末尾”,体验内涵

牛奶2.80元

面包4.00元

汽水3.05元

火腿肠0.65元

(1)小强去超市购买了一些物品,得到一张购物单(出示例5):

合计10.50元

请你帮他找一找:这些物品的价格中哪些“0”可以去掉?

在书上填一填。

学生完成后进行全班交流:

①2.80元=2.8元。说说你是怎样想的。

想法一:根据小数的性质,直接去掉末尾的“0”。

得到2.80元=2.8元。你还能用其它方法证明吗?

想法二:2.80元是2元8角,2.8元也是2元8角。

想法三:2.80是2个一和8个十分之一,2.8也是2个一和8个十分之一。

谈话:根据想法二和想法三,都证明了2.80元末尾的“0”能去掉,看来小数的性质确实是合理的。

②3.05元中的“0”能去掉吗?为什么?可以结合具体数量解释:3.05元是3元零5分,如果去掉“0”,3.5元是3元5角,两者不等。也可以结合计数单位解释。

由此看来,小数中的“0”是否都可以去掉?只有小数哪里的“0”才可以去掉?(只有去掉小数末尾的“0”,小数的大小才不变。)

(2)口答练习六第1题:下面各数中的哪些“0”可以去掉?哪些“0”不可以去掉?为什么?

[设计意图:在知识的获得上,学生最相信的是自己在学习过程中的亲身经历与体验。小数的性质实质上是说明小数在什么情况下是相等的,学生在例题以及试一试的多个数学现象中已经有了一定的体验及发现。然而,添上或者去掉的“0”应在小数的“末尾”,这种体验尚未深刻。因此,这一层次通过突破重点与难点的专项教学——辨析具体实例中哪些“0”可以去掉,旨在让学生更加深刻地体验小数性质内涵——突出小数“末尾”。]

三、解决问题,体验小数性质的应用

1、小数的化??

根据小数的性质,2.80元就等于2.8元,所以我们通常可以去掉小数末尾的“0”,把小数化简。

化简下面的小数:0.400 0.080 1.750 29.00

学生独立思考,口答。提问:化简0.080,“0”都能去掉吗?

2、小数的改写

试一试:不改变数的大小,把下面各数写成三位小数。0.4 3.16 10

学生独立思考,在书上填空。

完成后交流结果,并提问:改写这三个数时应用了什么知识?为什么给三个数添上的“0”的个数不同? “10”是整数,怎样把它改写成大小不变的三位小数?

小结:去掉小数末尾的“0”化简小数,或者在小数末尾添上“0”增加小数部分的位数,这些都是应用小数的性质,在不改变小数大小的前提下进行的。

如果把整数改写成小数的形式,必须在整数个位右下角点上小数点,再添上0。

四、巩固应用,深化小数性质的体验

1、完成练一练第1题。观察数轴图,照样子在方框里填上合适的小数。

完成后观察每组中的两个数,你有什么发现?

0.1和0.10、0.2和0.20、0.3和0.30……每组里的两个数对应于数轴上的同一个点,说明小数的性质确实是存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示?

2、完成练一练第2题。先涂色表示各小数,再比一比。

交流时结合涂色部分说说涂色时的感受:为什么0.6和0.60的大小相同,而0.6和0.06的大小不等?

教师就图小结:如果添上或去掉的“0”在小数末尾,不会改变原来数的大小;如果添上或去掉的“0”不是在小数末尾,小数的大小随之发生变化。

[设计意图:这两题都是数形结合,借助直观的数轴图使学生清晰地看到两个数对应于数轴上的同一个点,通过正方形涂色部分的大小比较又能使学生直观地感受到添上或去掉的“0”必须在小数末尾,突出了小数性质的内涵。直观的形能帮助学生体验、理解抽象的数。]

3、完成练习六第2题。学生练习后提问:为什么不把0.018和0.180连起来?

4、完成练习六第4题。学生独立改写。

交流时重点指导0.5400,80的改写方法。使学生认识到:应用小数的性质改写小数,有的需要去掉小数末尾“0”,也有的需要在末尾添“0”增加小数部分的位数。

5、完成练习六第5题。

提问:在哪些地方看到过小数末尾添上0的数?(商场的标价上)

学生独立改写后交流。

谈话:用“元”作单位表示钱数时,因为人民币“元”后面还有“角”、“分”,所以钱数一般改写成两位小数。比较一下,用“元”作单位改写成两位小数后有什么感觉?(这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。)

五、总结延伸

通过本课的学习,你有什么收获和大家分享?我们是怎么探索小数的性质的?通过对整数末尾0的变化的研究,我们提出了小数末尾0变化引起变化的猜想,并通过生活的实例发现了小数性质的存在。

0的作用大不大?通过在小数末尾添上或者去掉0,我们就给一个小数找到了许多大小不变的朋友。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

小数的教案篇4

一、教学内容:义务教育课程标准实验教科书数学四年级下册61—63页内容

二、教学目标:

1.知识与技能:通过一组数的比较,观察各数之间的相同点和不同点,引导学生发现小数点位置的移动引起小数大小的变化规律,并应用这一规律计算有关的乘、除法。

2.过程与方法:通过操作、观察、归纳、概括等数学活动,发展数学思维能力。

3..情感态度价值观:培养学生的合作意识及知识迁移和推理能力。

三、重点难点:

重点:小数点位置移动引起小数大小变化规律的应探索及掌握。

难点:小数点位置移动引起小数大小变化规律的理解及灵活应用。

教学准备:小黑板 教学挂图(小数点移动)

四、教学过程

(一)复习准备

1、提问。(1)把5米分别扩大10倍、100倍、1000倍,各是多少米?(2)把5000厘米分别缩小10倍、100倍、1000倍,各是多少厘米?

2、按从大到小的顺序排列。0.004 0.4 0.04

(二)导入新课

1.师:[出示小黑板]下面是四年级三位同学的身高纪录。请大家看一看,这些数据对不对?

(小明14.5米,小红1.38米,小李0.14米)

2.师:你们笑什么呀?

生:小明的身高不对。14.5米太高了。

生:[用手比]小李0.14米也不对,0.14米只有这么高

师:两个错的数据错在哪里?小数点写错了位置。

师:是啊,在小数点的末尾添上0或者去掉0不改变小数的大小,但是小数点的位置移动直接引起小数的大小发生变化。今天我们就一起来学习小数点移动的知识。[板书课题:小数点移动]

(三)探究规律

1、出示情景

出示(例5教学挂图):教师便叙述边板书0.009米---0.9米—0.9米---9米{同学们都看过西游记吧,齐天大圣孙悟空的“金箍棒”平时放在耳朵里,长只有0.009米,遇到妖怪的时候,才亮出来,由小变大,0.009米、0.09米、0.9米、9米、90 米……

师:观察这组数和金箍棒的变化,你有什么发现?(从上往下观察小数点是怎样移动的?数的大小有什么变化吗?从下往上观察小数点是怎样移动的?数的大小有什么变化?)

小结:看来小数点向后移动,原来的数就扩大;小数点向左移动,原来的数就缩小。

板书:右移扩 左移缩

2、合作探究

(1)提问:从上往下观察它们都是把小数点向右移动,却得到了三个不同的数,对吗?看来小数点移动的位数不一样,原数大小的变化也就不一样。数的大小的变化既与小数点移动的方向有关,还与小数点移动位数的多少有关。

(2)合作探究:

究竟有怎样的关系呢?我们来继续深入研究。各组有这样一张表格和一张小数数位表,请你们小组选择其中的一种方法进行研究。先吧空白处填写完整,再观察小数点移动的位数与原来小数的大小变化。小数点可以向左移动,也可以向右移动。

方法1:表格

小数点移动的位数

( )米=( )毫米

小数的大小变化

从( )往( )观察 小数点向( )移动

移动( )位

( )米=( )毫米

移动( )位

( )米=( )毫米

移动( )位

( )米=( )毫米

方法2:(学具中的数位表)

(3)交流汇报

谁来说一说,你们是选择哪种方法研究的? 你们发现了什么?

能概括地说一说我们发现的这个规律吗?

[指名学生对照板书说明小数向右移动引起小数扩大的`规律]

悟空打完妖怪,金箍棒要放回去了,谁来说一说这个时候金箍棒怎么变的?(从下到上观察)

(四)实际应用

1.明确数的变化的方法

我们大家研究得出这个规律有什么作用呢?

1.如果要吧一个小数扩大10倍、100倍、1000倍……可以怎么办?

如果要缩小为1/10、1/100、1/1000……呢?

2.集体交流

根据小数点移动的变化规律,如果要吧一个数扩大到它的10倍、100倍、1000倍,只要把小数点向右移动一位、两位、三位就行了。要把一个数缩小到它的1/10、1/100、1/1000,只要把小数点向左移动一位、两位、三位。

3.强化去0、添0的问题

出示例6、7 把0.01扩大到它的10倍、100倍、1000倍,各是多少?

把1缩小到它的1/10、1/100、1/1000,各是多少?

遇到位数不够怎么解决?

小数点向左移动时,如果整数数位不够则要在数的左边用“0”补足。

整百、整千的数,小数点向左移动后,小数末尾的“0”要去掉。

4.填空: 把2.3的小数点向右移动一位,就( )到原数( )倍。

把0.375扩大到原数100倍,小数点向( )移动( )位。

把0.73的小数点向( )移动( )位,就缩小到原数的1/1000。

把30的小数点向( )移动( )位,原数变成0.003。

5. 把1.8改写成下面各数,它的大小有什么变化?

0.018 180 0.0018 1.80

(五)总结本节知识,畅谈收获。

附:板书设计

小数点移动

0.009米→0.09米→0.9米→9米

0.009米=9毫米

0.09米=90毫米

0.9米=900毫米

9米=9000毫米

小数的教案篇5

教学内容:整数、小数四则混合运算的顺序,包括带有中、小括号的式题,课本第 38- 39 页的例 1 - 3 。练习十 1-4题。

一、复习

1、口算:

3.6+ 4.4 10- 5.2 3.4 × 0.2 7.8÷ 6

1÷4 7.5÷0.3 9.8- 8 0÷27.9

6.5 ×0.2 0.1×0.5 13.2+6.8 0.15÷15

二、新授

(一)、教学例1,讲解“级”的含义。

书本第 37 页

3、做一做 第 37 页

请四位同学板演,其余的做在本子上,教师巡视。

教师讲评。

(三)、教学例3,讲解有括号的算式运算顺序。

0.4×(3.2—0.8)÷1.2

5×〔(3.2+4.06)÷6.05〕

三、全课总结(略)

四、巩固练习

1、说一说练习十1、2题个题的运算顺序。

2、练习十 4

五、课堂作业

练习十 3

⑴4.8与2.7的.和乘以4.02,积是多少 ?

⑵35.7除以0.7的商,加上12.5与4.8的积,和是多少?

⑶10.2减去2.5的差,除以0.3与2的积,商是多少?