我们在写好教学反思之后,可以找出教学中的缺陷不足,教学反思是为了帮助我们分析教学中存在的不足,以下是28模板网小编精心为您推荐的小数乘小数教学反思参考6篇,供大家参考。

小数乘小数教学反思篇1
今天上了第四单元第一课时的内容,即小数的加法和减法,小数加减法的教学是在小数的意义、性质、数位顺序表等知识的基础上进行学习的,教学这部分知识,不仅要让学生掌握小数加减法的算理和法则,还要同整数加减法结合起来,让学生整体上把握加减法的实质。小数加、减法的计算方法在算理上与整数的一致,都是相同的数位上的数对齐。以下是我对本节课的几点思考:
1、我从学生的生活经验和已有知识出发,将抽象的数学知识寓于现实的、有意义的生活中,并在教学与生活中架起了一座桥梁。学生在生动有趣的活动中不仅完成了对新课内容的建构,而且也体会到了数学来源于生活,又应用于生活的真谛。
2、利用学生现实生活中的购物素材,激发学生的学习兴趣是本节课的最大特点。通过学生亲自购物活动使学生真实地感受到数学就在身边,从而对数学产生了浓厚的兴趣,激发了学生学习数学的积极性。
3、为了让学生结合自己的生活经验学数学、用数学,我充分利用“小数加减法”在生活中的原型,在众多的生活实例中选取了“购物”这一学生感兴趣的生活情境,并通过创造性的活动把数学知识与学生的生活经验融合在一起。
4、在课堂上,我首先引导学生观察购物清单,提出数学问题。由熟悉的“生活”情境引发问题,学生的探索必然是积极主动的,发挥学生购物付款的经验,对小数加减做出不同水平的解答。
5、设计不同的`有针对性的练习。在不同题目的训练中,学生通过不断的实践,从而理解了小数加减法的计算方法。
但是我总觉得缺少点什么,这样的教学学生除了获取知识以外,还获取了什么?学生有没有考虑过“为什么这样做?”“这样做出来的结果正确吗?”等这几个涉及数学思维方面的问题?比如在第一次的感悟中由于小数数位相同,绝大多数学生很自然会把小数点对齐进行计算,结果自然是正确的。我在教学中好像无条件地认可了这种算法,至于这种算法成立的前提条件我未让学生充分的讨论,学生也毫不怀疑地顺着我的思路下去,第二次感悟(小数数位不同的加减法)就这么顺其自然地判相同数位对齐的算法为对,其他的算法为错。这不免使我想到课堂上存在的一种现状:在表面上情境创设、算法多样化、交流互动等“美丽光环”的掩盖下,学生的学习其实是肤浅、浮躁的。所以在以后的教学中我将会注意学生思维能力这方面的培养。
小数乘小数教学反思篇2
1、“数学教学要充分考虑学生的心理发展特点,结合他们的生活经验和已有知识,设计富有情趣和意义的活动,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学”。在处理教材时,我没有注意把教材与学生的特点有机的结合起来。导致学生对于“循环”这个词理解的不是很好。用学生身边的循环现象来突破循环小数的定义是能够起到事半功倍的效果。
2、教学时,我从学生功能的思维特点出发,设计复习旧知得出循环小数,再从循环小数的概念——判断——循环节——写法——分类,引导学生观察、比较、分析,逐步加深对循环小数的认识,并注意让学生在应用“新知”的过程中,加深对“新知”的理解。
但是在教学中关于商是循环小数的列竖式计算,我只是在开头导入时粗略的讲解,没有告诉学生应该怎样操作。竖式计算对于学生来说并非“新知”,但是它们是让学生进一步理解时不可缺少的形象生动的模型,在教学中,我应该先让学生尝试着自己进行计算,同时引导学生做到哪一步就可以了?为什么?把精力放在引导学生观察竖式、发现规律上,使学生对“依次、不断、重复出现”有了更为具体的感性认识,是学生在十分自然的状态下逐步进入“角色”,突出了模型的`作用。这一点本来我是可以在导入部分就讲好的,这是个小小的败笔。
3、以往的教学程序上主张“先教后学”,这种教学方法容易造成学生被动地学,不利于学生自觉能动性的发展。我的教学设计能让学生在复习旧知的过程中发现新知,弄清知识的前后联系,培养学生自主探索和自学的能力,养成自己解决新问题的好习惯,变“先教后学”为“先学后教”。遇到难以解决的问题时,课堂上在小组里面交流、探讨,通过小组合作学习,不仅可以使学生有更多的机会对自己的想法进行表述和反省,也可以使学生学会如何去聆听别人的意见并做出适当的评价,使每个学生都获得平等参与的机会,真正做到让每个学生都在原有的基础上有所进步。这一点我是做的比较差一点的了,过分注重了个体,没有充分发挥集体的作用。只有这样,既能发挥学生的自立能力和创造能力,体会到成功之喜悦,又达到了素质的要求,真正做到了优化教学过程。
4、练习的设计,我是花了较多的心思。这些练习是有很强的针对性的。一是能针对学生可能会出现的问题,引导学生做进一步思考,有利于加深学生对循环小数的认识;二是注意了结合数学内容训练学生运用概念进行判断、推理,而不是满足于学生简单地回答“是”或“不是”。这样就能培养学生对简单的问题进行判断、推理和“有条有理有根有据地回答问题或叙述理由的能力,进而成为学习的主人。
我们的课堂不是自己的课堂,而是学生课堂。我们老师要从讲台上走下来,与学生融为一体,让学生畅所欲言。新课程中我们不再是课堂的统治者,因为统治者总免不了令人“惧怕”。我们不能再居高临下,而是与学生站在同一个平台上互动探究,在平等的交流中作倾听与发现者,在激烈的争论中做引导和评价,觉得和学生的距离一下子拉近了很多。这样教师作为学习活动的组织者、引导者,合作者,引导学生经历数学知识形成的过程,让学生获取知,培养了学生自主探索的能力,同时,学会学习的策略与发现的方法。这是我们每个人民教师都希望的理想模式。我们定会朝着这个方向前进!
小数乘小数教学反思篇3
?小数的产生和意义》是人教版四年级下册《数学》教材第四单元第一课时的内容。在教学这一内容时,我运用“数形结合”的思想,进行了两次不同的尝试教学:
第一次教学: “小数的意义”这部分内容我是这样来处理的:借助课件直观形象的优势,让学生在想象、类推中理解“小数的意义”。教学过程如下:
课件演示:把1米平均分成10份。让学生观察后思考:把1米平均分成10份,每份是多少分米?如果用米作单位写成分数是多少米?写成小数是多少米?学生回答后追问:这样的3 份或7份用分数和小数又怎样表示呢?……学生借助课件写出相应的分数和小数后,引导他们观察板书归纳出“一位小数”的概念 。 在“两位小数、三位小数”的意义也采用这个方法,让学生在推理、想象中探究。为了让学生更清楚地看到把1米平均分成100份,每份是1厘米,我利用多媒体课件把1厘米放大。然而课件展示1厘米的长度和1分米的长度差不多。给学生一定的误导。结果是:0。1米、0。01米、0。001米的实际长度是多少?学生头脑中一点印象也没有。以至于在后面学习小数的“计数单位”时感到很空洞,他们不知道“计数单位”是指什么?为什么要以0。1、0。01、0。001……作为小数的计数单位?
反思教学上述教学,存在着这样几个问题:其一、没有帮助学生在头脑中建立0。1米、0。01米、0。001米……具体表象。学生以课件为支撑,借助想象去推理。由于缺乏操作体验的过程,学生头脑中的0。1米、0。01米、0。001只是几个概念而已,至于 0。1米、0。01米、0。001米……实际长度是多少?头脑中没有印象。这样抽象与表象之间缺乏应有沟通,影响了后面“小数计数单位”的教学。第二学生对小数的计数单位缺乏体验的过程。教学中没有设计用0。1、0。01、0。001……等为计数单位来找小数的体验过程。其三、课件的误导。课件出示1分米、1厘米的放大图,展示给学生的1厘米、1毫米与实际长度相差甚远。反而对学生产生的误导:认为1厘米与1分米的长度相等。
针对上述问题我进行了如下的修改:第一、在运用多媒体课件的同时,加强学生的操作体验。如教学110 米就是0。1米时,增加了在直尺上任意找0。1米的活动。让学生知道这个0。1米是指十份当中的任何一份,而不是单指0—1之间的这一份。同时让学生围绕“0。1米”这个基本的计数单位在直尺上找小数的过程:如在米尺上找出0。3米,说一说你是怎样找出0。3米的?0。3米是几分之几米? 0。3米里面有几个0。1米。或在米尺上找出7个0。1米,想一想用小数表示是多少米?用分数表示又是多少米?……让学生在“找”“说”的活动中,把0。1米的实际表象深深印在脑海里,同时也感悟到一位小数都是由几个0。1组成的,1米里面有10个0。1米。0。1是一位小数的计数单位。第二、为了防止放大图给学生的误导,在出示课件后安排了让学生在直尺上找1厘米、1毫米的活动。让他们在头脑中建立1厘米、1毫米正确的表象。
按照上述两个教学环节的设计,我进行了第二次试教。教学中我发现:“学生在直尺上找0。1米”时思维非常活跃,主要体现在以下几个方面:一是:在直尺上找0。1米时,学生欣喜地发现:把1米平均分成10份,0。1米不仅仅是指0—1之间的长度,8—9之间的长度是1米的110 也是0。1米。“不同的位置为什么表示的长度都是0。1米?”学生面带疑惑。经过观察、比较、讨论学生明白了:原来它们都是指十份当中的`任何一份。他们还发现:1米里面竟然有10个0。1米……学生在 “找0。1米”的过程中,“0。1米”的实际大小已经深深地印入了脑海。同时学生对“0。1”是一位小数的计数单位也有了一定的体验和理解。这个过程正是他们自我吸收、内化新知过程,它较好地体现了数形结合的思想,培养了学生思维的深刻性。二是:提问“暗示” 培养对应思维、可逆思维。小数实质上是十进制分数的另一种表示形式。教学中我采用提问来“暗示”来突破这一难点,提问时围绕“0。1米”这个基本的计数单位来设计问题:如在米尺上找出0。3米,说一说 0。3米是几分之几米? 0。3米里面有几个0。1米。这个问题意在以0。1米为基本的计数单位,在直尺上找到0。3米,然后根据小数0。3米找到相应的分数。又如在米尺上找出7个0。1米,想一想用小数表示是多少米?用分数表示又是多少米?此问意在让学生以0。1米为基本的计数单位找出0。7米后,找到与之对应的分数。并同时渗透0。7米里面有7个0。1米。这样一正一反的提问,让学生能意识到小数实质上是十进制的分数。有效培养他们的对应思维、可逆思维。
教学实践证明:在教学中运用数形结合,能激发学生学习数学的兴趣,增强学生的求新、求异意识。符合儿童的认知规律,是提升学生思维的必由之路。
小数乘小数教学反思篇4
“小数的产生和意义”这一教学内容属于概念教学,概念教学对培养学生的认知能力、观察能力、迁移能力、抽象概括能力等各方面数学素养有一定的促进作用,也是一种思维的挑战,“小数的产生和意义”体验式教学设计思路及反思。现代教学论认为“最有效的学习是学生对学习过程的体验,它能给予学生自主建构知识和情感体验的空间,激发学生的思维。”新课程关注知识与技能、过程与方法、情感态度与价值观的有效整合,我们的课堂上就要关注学生学习过程中的有效体验,提高学生的学习效率。
自学校确立体验式教学课题并在课堂教学中开展体验式教学模式以来,我又进一步反思了自己的教学形式,梳理了自己的教学思路,整合了自己的教学模式,改进了自己的教学特色。将体验式教学新生的元素融进课堂,促进了课堂教学和谐、有效、充实、高效的开展。
以本节教学内容为例,课堂中有两次大的体验活动。一是在实际测量中感知小数的存在,在生活实际中感受小数的产生。二是在长度单位这个现实背景中,感知一位小数、两位小数、三位小数等的存在,并在小数与分数的观察对比中体验小数与分数的联系从而认识小数的意义。我主要来谈谈第二次体验活动。借助米尺,把一米平均分成10份,每一份是1分米,任取其中的一份会是多少呢?学生会在平均分的基础上想到十分之一,并能写作0.1,这些都是学生三年级下学期的学习经验,这里需要学生感受体验的是什么呢?就是让学生感受把一米平均分成10份,取其中的几份用分数表示这些分数有什么特点,用小数表示这些小数又有什么共同的特点,进而联想到分母是10的分数和一位小数有什么联系?这是在多个案例中学生进行的感知体验活动,在学生有了初步感知经验的基础上让学生在小组里说一说自己发现,一是分享成果,二是给予提示,三是达成共识。小组汇报时我会及时给予评价指导最终师生共同对这一学习过程进行总结就是:分母是10的小数可以写成一位小数。迈出了第一步,学生在后面感受两位小数,三位小数时就会有了一个明确的`学习方法,所以在感受两位小数这一环节我会半辅半放让学生先自主感受,再小组交流汇报,这就更加丰富了学生的感性经验,在感受三位小数时,我完全放手让学生自己去感受体验,并脱离小组交流这一拐棍,完全让学生自己形成学习方法,并学有所成。在揭示小数的意义这一神秘面纱时,学生已经积累了一定感性经验,让学生思考“分数和小数有什么联系?”这也是本节课的学习高潮,这一体验活动是学生经验的提升,也是经小组讨论进行简练概括。我认为学到这,学生真正经历了知识的形成过程,学习是有效的。
反思这节概念教学课,我认为保证学生进行有效的体验,首先要清楚学生已有经验和基础,备课时有所预设,创设的问题情境要简约、直观、有针对性、有思考价值,能激起学生“要去感受体验”的冲动。其次,教师及时必要的梳理、评价、反馈学生的思考交流成果,形成共性的知识成果,及时进行学习方法的指导,形成怎样去学的意识。
小数乘小数教学反思篇5
1、小数意义这一课属于概念教学,如何让学生建立准确的概念,如何引导学生自主探究,本节课做的不够。我只担心时间不够,甚至没让学生上台进行实际测量,不敢放手,所以本节课显得教师在唱独角戏,总觉得自己说得太多,学生说得太少。
2、概念教学如何自主探究、合作交流,改变学习方式值得研究。归纳小数意义是本节课的难点,这里的问题设计我修改了几次,但我觉得总是不能很好的`揭示小数的本质,特别是十分之几、百分之几、千分之几的分数为什么能写成小数,有的学生可能没有理解。所以在教学时,我采用“告诉你”的方法,这种教学方法可能有所欠缺。
3、教师预设的问题指向目标不明确,对于提问的细节、有效性需要仔细、反复的推敲,是提问有效、高效。课堂上教师的语言显得太过直白、随意。虽然是常态课录像,但总能发现自己的欠缺,比如:备课时只顾自己设计自己的教学环节,而忽略了备学生这一重中之重的
因素,造成自己和学生课堂交流的不畅,还有自己的课堂节奏单一,没有激起学生思维;整节课自己往里“灌”的知识太多,所以学过之后的检测效果不太好,这就给自己的常态课一个明确的方向,不能胡子眉毛一把抓,要击中要点,这就是在以后的教学中自己要攻克的要塞。
小数乘小数教学反思篇6
教学的节奏是由教师来把握,但是把我的前提是学生接受的程度,如果大面积的学生显示出需要“加强营养”的话,那我们就得反思自己的教学是不是有什么问题了,如果听之任之的话,将会收获一堆青涩的果实。
这是一节关于《一个数除以小数》的计算课,本节课由回顾“商不变的性质”导入新课,让学生再次感受当被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。从而自然而然的让学生面对一道一个数除以小数的题目让孩子们自己想解决问题的方法,大多数学生想到了利用商不变的性质去解决。但是从个别学生的表情上我观察到了一种茫然,于是我想到了再次让学生跟着我一起回顾上学期学习过的“商不变的性质”,用最简单的整数除法的例题引导她掌握规律,充分的进行相关的练习,直到离下课还剩下5分钟的时候才给这个孩子出了一道简单的例题:45÷1。5,让这几个学生探索,让他们先观察这个算式与45÷15的不同之处,然后再想想有没有什么方法去解决问题,如果这里的除数是什么样的数字就好办了?学生立刻想到了如果是整数就好办了,可是如果把除数变成整数的话,得出来的商肯定要发生变化的`不是吗?因此,让孩子们跟着我来回忆商不变的性质是怎么说的……耐心的讲解和启发,是会让一朵朵小花开的很灿烂的!这种静待花开的感觉真好!
这节课虽然分成了两步走来让全体同学接受新知,但是这其中也有弊端,当我给这部分学困生再次 讲解的时候对已经掌握了新知的那部分学生的练习安排得不够合理,课堂秩序有些失控,这是在安排新课时没有想到的。其实,对于这个班的教学,我应该随时安排两套方案的,一旦学生出现这种严重的两级分化的现象,应该尽可能的耐心等待每一朵花开的精彩不是吗?
这样的教学还是初次尝试,但是基本上想要达到的效果还是有的。希望每天的花都能开的更美更艳丽,希望每天的教学都能够跟好更精彩!