分数乘整数教案7篇

时间:2024-09-15 作者:pUssy

通过不断完善教案,我们可以发现自身的不足,从而有效提升教学水平和能力,教案的准备可以帮助教师在课堂上更好地把控时间,避免偏离主题,以下是28模板网小编精心为您推荐的分数乘整数教案7篇,供大家参考。

分数乘整数教案7篇

分数乘整数教案篇1

教学目标:

1、知道带分数是假分数,是整数与真分数合成的数

2、会把假分数化成整数或带分数,会进行分数与小数的互化

3、使学生经历假分数化成整数或带分数,分数与小数互化的探索过程,进一步发展数感。

4、培养良好的学习习惯,树立学好数学的信心。

教学重、难点:会把假分数化成整数或带分数,会进行分数与小数的互化。

教学过程:

一、谈话导入

同学们还记得假分数吗?举几个例子,教师随机补充

1、有意识地把假分数分成2类(一类是能化成整数,另一类是不能化成整数的)

二、教学例7

1、根据学生实际举例进行教学(设计的`时候就用书上的例子进行)

2、出示假分数

=()=()=()

①同学们想想,把这些假分数化成整数分别是多少?

②把自己的想法在小组里交流交流

③交流方法:

④:在刚才的交流中,能够化成整数的假分数的分子分母有什么特点?

⑤归纳特点:能化成整数的假分数,它的分子一定是分母的倍数,是几倍化成整数就是几?

⑥小练习:a

b你能举几个能化成整数的假分数

3、教学带分数

①同学们在刚才距离的过程当中,还有这一部分的假分数能化成整数吗?(指着黑板上剩下的另一部分假分数)例如

②交流:不能化成整数的假分数,可以化成一个整数和一个分数合起来的分数,例如:可以分成和,写成1,想这样的分数叫带分数,读作:一又三分之??

③教学=1,让学生在数轴上看一看,进一步理解假分数,带分数的联系。

④老师随机板书,写几个带分数让学生读一读

4、教学例8

①怎样把化成带分数

②学生尝试计算,教师巡视

③交流方法:a可能是画图的

b可能是计算的,可分成8个和3个,8个等于2,在加上就是2。

④读一读这个带分数

⑤教师介绍用除法计算来转化:=11÷4=2

⑥方法:请同学们想想怎样用除法直接把假分数化成整数或带分数。

⑦完成书上47页练一练

三、练习

1、完成练习九第1、3题

学生尝试练习,教师讲评有错误的题目,找出原因进行修正。

2、完成练习九的第2题

①先审题

②尝试练习

③说说为什么想到用这个分数来分析

④改写成带分数

⑤交流

3、完成练习九的第4题

①先让学生看懂题意:0-1之间平均分成3份,每一份是,3个就是1,往后一格就是4个==1

②学生尝试填写其他空格

③交流

4、布置课堂作业

完成练习九的第5题

四、

今天学习了什么,有哪些收获?

分数乘整数教案篇2

教学目标

1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

2.能运用法则正确地进行计算。

3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

教学重点

整数除以分数计算法则的推导过程。

教学难点

如何区别、统一分数除以整数、整数除以分数两个计算法则。

教学过程设计

(一)复习旧知

1.说出下面各题的倒数。(投影出示)

2.把算式补充完整。(投影出示)

问:分数除以整数的法则是什么?谁不变?谁变?

生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

问:分数除以整数是把谁变成它的倒数了?为什么?

生:把整数变成它的倒数了,因为整数处在除数的位置。

师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)

(二)新授教学

1.一辆汽车2小时行驶90千米。1小时行驶多少千米?

问:①谁会列式计算?

板书: 02=45(千米)

②根据什么这样列式?

生:根据路程时间=速度。

问:要求1小时行驶多少千米就是求什么?

生:求汽车的速度。

问:怎样列式?为什么这样列式?

怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

问:怎么求?为什么这样求?

(2)要求1小时行多少千米,怎么求?

算式变化形式:

根据上面的推导过程可得出:

这两个算式相等吗?

我们把这道题完成。

答:汽车1小时行驶45千米。

(3)观察算式:谁没变?谁变了?怎么变的?

讨论:整数除以分数的计算法则是什么?

谁能说一说?

板书:整数除以分数等于整数乘以这个分数的倒数。

同桌互相说一说。

谁愿意给大家说一说?

(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

订正,错的说错在哪里,并改正过程。

(三)巩固练习

1.投影出示。

(1)分数除以整数(0除外)等于分数乘以整数的倒数。

(2)整数除以分数,等于整数乘以分数的倒数。

问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

2.把下面各题补充完整。

3.计算。在本上写过程,得数填在书上。

订正,指名把过程写在投影片上。

错的同学说明错因。

4.判断。对的举,错的举,并说明理由。

师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

(四)课堂总结

这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

(五)作业

课本第36页第1,3,4题。

课堂教学设计说明

本节课的内容是整数除以分数的计算法则。这节课有两个难点:

第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

分数乘整数教案篇3

分数除以整数

设计教师:大桥中心小学 王丽霞

指导教师:内乡教研室教研员许守敬

教学内容:义务教育十一册课本29页内容

教材简析:分数除以整数,以分数加法、减法、乘法和求一个数的倒数为基础,推导其计算法则。为以后学习分数除以分数,及分数四则混合运算做铺垫。

教学目标:

1、知识目标:引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,感知法则的形成过程。

2、能力目标:让学生在动手做、动脑想的过程中,培养学生自主探究、归纳整理的能力,同时培养合作交流的能力。

3、情感目标:培养学生热爱数学、运用数学的情感。

教学重点:分数除以整数的计算法则的推导过程。

教学过程:

一、复习旧知,导入新课

1、 出示口算卡片,学生口答。

+ - 3 6

修改:(挑其中的二个或三个算式,让学生说出算理。)

?评:口算练习不仅具有密度大、效率高的优势,而且也是计算能力的重要组成部分。适当加强口算练习,不失为一种减负增效的教学措施。口算时要求说算理,目的是培养学生用数学语言表达的习惯。】

2、把 米的绳子平均分成2段,每段占绳长的,每份长米。

二、合作探究,解决问题

(师出示一段绳子)

上一题把这段绳子平均分成2段,每段长米。有很多同学不能回答,这一节就来研究它,好吗?

(师提示)大家可以利用身边的实物、可以画图、可以转化成以前学过的知识等等。下面分组讨论,讨论好后每组派代表展示。

(生小组活动,师巡视辅导)

?评:教师强调学生的实践操作,引导学生通过量一量、画一画、折一折、涂一涂、分一分等形式,让学生在大量的实践活动中去感受、去体验、去探究,让学生充分感受数形结合的优势。】

三、展示交流,内化提升

a组:我们用实物:(拿出一段绳子)我们量得绳子长0.8米,即 米。把绳子对折就是把它平均分成2份,其中一份量得结果是0.4米,即 米。

b组:我们用画图的方法,如图: 米是4个 米,平均分成2份,每份就是2个 米,即 米。

c组:我们小组用一张圆饼来表示 米,把一张圆饼看做单位1,平均分成5份,4份代表 米,其中2份是 米。

米 米

d组:我们小组也是用折纸的办法,用一张长方形纸表示 米,把 米对折就是 米。

e组:我们小组用转化法,把 米转化成求 米的0.5倍是多少,列式是 2= 0.5= 米。

?评:引导学生把分数与倍数结合起来。使学生的知识融会贯通。】

f组:我们小组用转化法,把 2转化成求 米的一半是多少,也就是求 的 是多少,列式是 2== 。

师:大家用不同的方法,得到了相同的结果。你们很棒!

如果把 米平均分成3份或7份或其他的份数,每份长度是多少呢?你们能不能,总结一种简单、易记的方法用于以后的计算中呢?

?评:在知识的获取过程中,学生不论用什么方法,最终教师要引导学生把一个新问题转化为已经解决的问题,用已有的知识、方法生成新的知识方法。让学生充分感受转化的美妙与魅力。】

下面大家自由讨论。

生:我发现: 2== 把除法转化成乘法,计算起来简便。

生:我发现: 2= 0.5= ,也是把除法转化成乘法。

生:一个数如果除以2,可以转化成乘0.5;它除以3,可以转化成乘0.333;除以4,可以转化成乘0.25.

生:你这样计算的结果不精确,步骤太多!

生:把除法转化成乘法的第一种简便、实用。

师:你们发现除法转化成乘法时,被除数、除数发生变化了吗?怎样变的?

生:我发现除以2变成乘 ,2和 互为倒数。

生:我发现计算中,除法变乘法,除数变倒数。

(修改前:大家发现了这种除法运算中的规律,你能计算下面各题吗?)

5 10 7 14

(修改后)

师:大家发现了这种除法运算中的规律,来做个游戏好吗?

课中练习:

对口令

(1) 师说除法算式,生对相应的乘法算式。

5 10 7 14

(2) 男生说除法算式,女生对相应的乘法算式。

3 5 11 30

?评:课中练习应结合这节课的重点(计算法则的推导过程)来设计,而不是如何计算。并且用对口令的游戏方式,能增加练习的趣味性。】

师:你能用一句话完整的说出,这种除法怎样计算的吗?

生:一个分数除以整数,等于乘这个整数的倒数。

(修改前:师说:这里的除数包括0吗?)

?教师的引导太过直白;教师好的引导应给学生思维形成矛盾的撞击,让学生自己在矛盾中得到启发,自我发现,自行解决。】

(修改后:)

师:谁能计算下面的算式? 0=?

(学生窃窃私语)

生:除数不能为0。

生:除数为0没有意义。

(生恍然大悟)生:一个分数除以整数(0除外),等于乘这个整数的倒数。

师:为什么要加上0除外?

(生略)

(修改后的内容)

师:你能结合五年级《字母与数》的知识,用字母来表示吗?

n=(n为非0自然数)

?评:教师引导学生用字母来表示,把知识上升到一定的高度上,变直观思维为抽象思维。诱导学生经历由特殊到一般的探索过程。】

师:大家观察一下,这节课所学的算式用什么共同点?

生:都是除法。

生:都是分数除以整数。

师导出课题

这就是我们这节课共同探究的《分数除以整数》(板书课题)

四、回顾整理,拓展应用。

师小结:学习了这节课,你有什么收获?

生:我学会了怎样计算分数除以整数。

生:我学会了用转化的方法来计算分数除以整数,就是把除法转化成乘法,用被除数来乘这个整数的倒数。

生:我学会用多种方法表示同一个内容。

拓展应用:

一、 下面的计算对吗?把不对的改正过来。

3==

2= 2=

3==

二、在括号内填上合适的内容。

(1) 5= =

(2) 2= =

(3) 把 吨化肥,平均分给5户人家,每户分这堆化肥的, 每户分化肥的吨。

思考题:(修改后的内容)

如果a是一个不等于0的自然数

(1)a=

(2)a =

?评:增加思考题的难度,目的是照顾到各个层次的学生,使每个层次的学生都能吃饱、吃好。】

分数乘整数教案篇4

教材分析

?分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。

学情分析

本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。

教学目标

知识与能力:

在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的`意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:

通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

情感态度与价值观:

引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点和难点

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

教学过程

分数乘整数教案篇5

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

?设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

5. 得出结果

根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

6. 猜想计算方法

观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

?设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

(二)探究几分之几乘几分之几的算理算法

1. 尝试猜想

请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

3. 验证反馈

(1)请几个采用不同验证方法的学生进行一一展示。

(预计方法:a. 画图(图形或线段);b. 转化成小数再进行计算;c. 利用分数的意义进行计算)

(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。

4. 得出结论

看来我们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

?设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

三、展示交流(展示交流,调拨归纳)

简化计算过程

根据我们所得的.结论,试着解决下面的问题

出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

(2)乌贼30分钟可以游多少千米?

1. 读题,独立列式并解答。

2. 反馈

(1)题(1)展示不同的计算过程:a、先计算再约分;b、先约分再计算。

(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

3. 练习

例4做一做1。

?设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

四、拓展总结(应用拓展,盘点收获)

1.基础练习

(1)先看数再计算(练习一6、7两题)

反馈校对、纠错。

在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

?设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

(2)完成例3、例4做一做剩下的题

反馈校对、纠错。

在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

2.练习提升

在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

○ ○ ○ ○

反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

(1)题1、题3主要引导学生从分数乘法的意义来理解;

(2)题2、题4主要是对分数计算方法的巩固。

?设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

3.拓展总结

这节课我们学习了什么?我们是怎样得出这些结论的?

没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

?设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

分数乘整数教案篇6

本课题教时数:本教时为第2教时备课日期9月9日

教学目标

1、使学生理解整数除法分数的计算方法,并能正确地进行计算。

2、培养学生分析、推理和概括等思维能力。

教学重难点

整数除以分数的计算方法。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习旧知

二、教学新课

一、 巩固练习

四、小结。

五、作业

1、口算

3542112

分数除以整数通常是怎样计算的?

2、复习第(1)题

学生口答算式与结果。

这一题已知什么数量,要求什么数量?按怎样的数量关系求?

出示数量关系式:速度=路程时间

3、口答填空

3/10小时是()个1/10小时。

1小时是()个1/10小时。

4、引入新课

1、教学例2

这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?

(183/10)

画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?

根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。

师边述说边画线段。

问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?

要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?

根据回答把线段图补充完整。

讨论:按这样来想,你认为第一步求什么?怎样求?

(1)1/10小时行的千米数是:183

为什么要用183?183能不能转化成用乘法来计算?

讨论:1/10小时行的`千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?

(2)1小时行的千米数是:181/310

(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?

问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?

从上面的推想过程看出,183/10转化成什么样的计算了?

比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?

2、小结。

1、练一练1

2、练一练2整数除以分数是怎样计算的?

3、练习八2整数除以分数和整数乘分数在计算时有什么不同?

4、练习八3

分组练习

做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?

说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。

练习八、1、4、5

181/310

=18(1/310)

=1810/3

课后感受

此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。

分数乘整数教案篇7

教学内容:

分数和整数相乘的计算

教材分析:

在已学过的整数乘法的意义和分数加法计算的基础上,教学分数乘整数的意义和分数乘整数、整数乘分数的计算方法。

学情分析:

对于分数乘法的意义与整数乘法的意义的区别还有待进一步强调,学生在计算时会出现不先约分或与分母相乘的错误。

教学目标:

掌握分数和整数相乘可以表示求几个相同加数的和的简便运算的意义,能运用分数和整数相乘的计算法则进行有关计算,并且知道先约分后计算比较简便。

教学重点:

分数乘法的意义,分数与整数相乘的计算方法。

教学过程:

一、复习

1、把下列分数化成小数。

2/5 3/20 3/8 7/25 1/4 9/50

说说分母是20、25、50的分数化小数的简便化法。如何判断一个分数能不能化成有限小数。

2、说说约分的依据,再对下列分数进行约分。

3/12 4/8 16/20 26/39 5/14

3、计算后再说说下列各组分数加法各有什么特点。

1/6+2/6+3/6 2/3+1/12 3/10+3/10+3/10

二、新授

1、分数乘整数的意义

(1)推导

由3/10+3/10+3/10,得出3个3/10相加,可以写成3/10×3,说说3/10×3所表示的意义。再由1/5+1/5+1/5+1/5 可写成一个怎样的算式。说说1/5×4所表示的意义。

(2)讨论

1/5+2/7能不能也写成一个乘法算式,为什么?

(3)得出分数乘整数的意义。

表示求几个相同加数的和的简便运算。b/a×c即表示c个b/a的和是多少。

(4)练习

说说下列各式的意义

1/4×7 3/5×8 4/9×3 5/12×3

列出下列各题的算式

3个7/9的和是多少? 4与3/8的和是多少? 5/8的9倍是多少?

2、分数和整数相乘的计算方法

(1)推导

3/10+3/10+3/10=9/10,所以3/10×3=9/10.用小数乘法也可来验证,×3=。观察这个9/10是怎样得来的。再举例:2/5×7,由意义可得到2/5+2/5+2/5+2/5+2/5+2/5+2/5=2+2+2+2+2+2+2/5=2×7/5=14/5。再用小数乘法来进行验证×7=。

(2)猜测

说说下列各式的结果

1/5×4 3/5×2 6/7×3 3/17×5 4/15×4

(3)让学生说说分数和整数相乘的计算方法。得出b/a×c=b×c/a

(4)归纳出分数和整数相乘的计算方法。

由b/a×c=b×c/a,说说c×b/a等于什么。得出分数和整数相乘,只要用分数的分子和整数相乘的积作分子,分母不变。

(5)练习

3/5×4=( )×( )/5 ( ) ×5/12=( )×3/( )

( )/5×( )=3×4/( ) 3/( )×( )=( )×7/16

(6)出示例1请学生尝试练习。

(7)明确先约分后计算,使计算简便。

注意 a、在乘的情况下才能约分 b、约分是在分子和分母之间进行的

三、巩固

1、课本第三页上的练一练。

2、课本第7页上的练习一第1、2题,第3题的第一行。注意一定要先约分后计算。

四、

1、分数乘整数的意义。b/a×c表示c 个b/a是多少

2、分数和整数相乘的计算方法。b/a×c=c×b/a=b×c/a,用分数的分子和整数相乘的积作分子,分母不变。

3、注意先约分后计算可以使运算来得简便。分清4/5×5和4/5+5的区别。约分只有在乘法的情况下才能进行,而且是在分子和分母之间进行的。

五、作业

课本第7页练习一第3题的第二行,第4、5、6、7题

六、教后小记

学生对分数乘整数的意义掌握较好,但有部分学生对于c个b/a的和与c与b/a的和相混淆。计算的法则掌握情况也较好,不过有个别学生出现整数和分母约分,还有极个别学生把加法也用乘法的方法来计算。可以看出学生对于所学内容的理解运用还有待进一步的加强。