教师写教案是备课中不可或缺的环节,有助于课堂教学的有序进行,教案的编写需要充分考虑学生的学习兴趣和能力,28模板网小编今天就为您带来了分数除法数学教案8篇,相信一定会对你有所帮助。
分数除法数学教案篇1
教学内容:
教材第27~28页的内容及练习。
教学目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2.掌握一个数除以分数的计算方法,并能正确计算。
3.培养学生解决简单实际问题的能力。
教学重难点:
1.掌握一个数除以分数的计算方法,并能正确计算。
2.整数除以分数的计算法则推导过程。
教学过程:
一、创设情景 激趣揭题
1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?
设计意图:设疑激趣。 明确目标。
二、扶放结合 探究新知
1.分一分,引导感知一个数除以分数的意义。
2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。
3.引导完成28页的填一填,想一想,你发现了什么?
4.引导归纳计算方法。
设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。
三、反馈矫正
出示p28的`试一试。
1.统一分数除法的计算法则。
2.指导完成p28练一练的1~4题。
四、小结评价 布置预习
1.引导小结:通过这节课的学习,你有什么收获?
分数除法数学教案篇2
一、教学内容
苏教版小学数学第十一册第33—38页“分数除法”例1—例4。
二、简要分析
本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。
三、教学过程
(一)复习旧知,作好铺垫,导入新课。
1、说出下列各数的倒数(出示卡片)
2、6、—、—、0.5、 1—、 0.7
2、用投影打出:下面两题简便计算的根据是什么?
12÷25=(12×4)÷(25×4)=48÷100=0.48
11÷125=(11×8)÷(125×8)=88÷1000=0.088
[简析:商不变规律的应用,为后面学习新知作出充分准备。]
3、用投影分a、b组分别出示:下列算式中,哪些算式你一眼就能看了它的商?
a组:78÷10.35÷1136÷721.8÷9
b组:—÷1—÷1—÷218÷——÷1
—÷——÷÷2——÷0.7
[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]
师:接着问b组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。
(二)指导探索,在新旧知识的衔接上教师加以点拔导学。
(1)请大家列出b组算式中除数不是1的算式。
—÷218÷——÷——÷—
4—÷2— —÷0.7
(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?
[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]
师:下面分学习小组进行讨论。
(3)交流。
学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。
学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。
[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]
(教师根据学生的回答,作好下列板书)
—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)
=—×—÷1=18×—÷1
=—×— =18×—
(三)引导学生观察、比较、类推,得出结论。
师问:这里我们是应用的什么进行变化的?(商不变的规律)
(教者把上面板书用虚线框起)让学生观察比较。
—÷2=—×—18÷—=18×—
问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)
生汇报:除号变成了乘号,除数变成了它的倒数。
分数除法算式变成了分数乘法算式。
师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。
练习:用复合投影片打出:
将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)
—÷— —÷— —÷612÷—
=—×—=—×4 =—×—=12×—
[评析:抓住时机,练重点难点,强化新知。]
6、讨论、比较、类推,概括方法。
问:在刚才的练习中,你认为有什么规律?
(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)
师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?
生答师板书:甲数除以乙数,等于甲数乘以乙数的'倒数。这就是分数除法的计算法则。(看书第38页)
引导学生讨论:为什么乙数要加上零除外?
(四)利用法则,练习重点,巩固新知。
1、—÷3=—×———=12÷—=12×———=
—÷—=—×———=—÷—=———()———
2、计算。(并指名板书,注意书写格式)
—÷3—÷——÷36÷—
3÷——÷——÷— —÷—
3、改错。
(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—
(3)—÷—=—×—=—
4、判断。
(1)1÷—=—÷1(2)a÷b=a×—
[评析:改错题、判断题的设计,进一步强化了计算法则。]
(五)作业练习,熟记法则。
1、练习八第3题的前4题
第6题的前4题
2、校对答案。(说出过程,强化法则的应用)
思考题:计算(1)4—÷2—(2)—÷0.7
[评析:这里是知识结构的完整,知识点的引伸。]
(六)总结。
1、今天我们一起研究了什么内容?
2、你有哪些收获?
3、计算过程中应注意什么问题?
四、教后评析
本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。
1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。
2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。
3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。
分数除法数学教案篇3
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的推导过程。
教学过程
一、创设情景,教学分数除法的意义
1、以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的'意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2、分数除以整数的计算法则是什么?(学生总结)
五、作业布置
分数除法数学教案篇4
教学目标
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具
投影仪。
教学过程
一、导入
1.笔算下面各题。
24÷4+16×5-37 46+50×[(900-90)÷9]
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。
三、课堂作业新设计
1.填空。
四、思维训练参考答案
思维训练
1.d 2.略
教材习题
教材第33页做一做
板书设计
分数四则混合运算
运算顺序
(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的'四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
分数除法数学教案篇5
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7×()=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。
下面口算几题:
3/8÷3/80÷4/91÷24÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式?你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性)
根据学生的回答板书:
3/4÷3=3÷34=1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷34/9÷410/9÷56/7÷2
6、质疑
你认为这种计算方法适用于所有的.分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2)1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5÷3=3/15÷3=1/15
(2)1/5÷3=(1/5×5)÷(3×5)=1÷15=
(3)1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3÷1=1/15
(4)……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得:1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3=1/15
观察1/5÷3==1/5×1/3,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题:
2/3÷32/11÷23/8÷65/4÷2
2、练习七第1题
3、讨论题
1/3÷a和1/a÷3(a≠0),那道题的结果大?为什么?
分数除法数学教案篇6
教学目标:
1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
2、通过练习,培养学生的计算能力及初步的逻辑思维能力。
3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。
4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:
确定运算顺序再进行计算。
教学难点:
明确混合运算的顺序。
教具准备:
多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17x5 (2)1.8+1.5÷4―3x0.4
(3)3.2÷[(1.6+0.7)x2.5] (4)[7+(5.78—3.12)]x(41.2―39)
3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?
二、新知探究
1、教师课件出示例4
2、课件出示自学提纲:
(1)例4中的哪些条件和复习中的3相同?问题相同吗?
(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……
(3)尝试说说自己的.解题思路并解答。
3、学生根据提纲尝试解题。
4、全班汇报
(1)根据学生的回答,归纳出两种思路:
a、可以从条件出发思考,根据彩带长8m,每朵花用xm彩带,可以先算出一共做了多少朵花。
b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
(1)计算1/5÷(2/3+1/5)x15
(2)说说运算顺序,再进行计算。
让个别学生说出运算顺序并计算题目的得数。
教师巡回指点,搜集存在问题。
教师黑板出示问题,学生上台改正,并说明理由。
(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。
三、当堂测评
练习九第1、2、3题:
注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6楼楼板到地面的高度实际上只有5层楼的高度。
学生独立完成教师点评,解决疑难。
学生相互得分,评选优胜小组。
四、课堂小结
这节课有什么收获?说一说。
还有什么不懂的?提出来小组内解决。
设计意图
1、在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练习加强计算的训练。
2、当堂测评题将学生置于提高之处,联系实际生活解决问题,让学生体会到数学知识的广泛性和严谨性教学后记
分数除法数学教案篇7
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:a,7/8是什么数 它表示什么
b,7÷8是什么运算 它又表示什么
c,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的.关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学p90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:a,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
b,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学p90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
b,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:a,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
b,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:a,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
b,你能举几个用分数表示整数除法的商的例子吗
c,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
d,b为什么不能等于0
4, 看书p91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
p93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
分数除法数学教案篇8
教学目标:
能力目标:培养学生动手动脑能力,以及计算能力。
知识目标:
体验整数除以分数的计算方法,并能正确的计算。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:整数除以分数的计算方法。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
前一课我们学习了整数除以分数的`计算方法,你们还记得吗?老师考一考你们好吗,看题目。
6÷=÷=÷=÷=
2÷=÷=÷=÷=
通过提问,全班订正,导入新课。并评价。
二、用小黑板出示下列题目。
3x=x=10x=25x=
提问学生解方程的规律,并指名说一说第一小题的解法。
其它题目独立作,全班订正。
三、课本第三题
指名说出题目的意思,然后解答,全班判定。
四、第四题
1、先独立计算,全班订正。
2、小组间交流发现了什么规律。
3、全班交流。
4、教师小结。
板书设计:
整数除以分数
除以真分数商大于整数
整数除以分数除以1商等于整数
除以假分数商小于整数