八年级下册数学教案6篇

时间:2024-01-31 作者:tddiction

一个成功的教案应该能够引导学生主动参与学习,通过教案的规划,教师可以更好地安排教学内容和时间分配,28模板网小编今天就为您带来了八年级下册数学教案6篇,相信一定会对你有所帮助。

八年级下册数学教案6篇

八年级下册数学教案篇1

【教学目标】

一、知识目标

经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

二、能力目标

知道分时方程的意义,会解可化为一元一次方程的分式方程。

三、情感目标

在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

【教学重难点】

将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

【教学过程】

一、课前预习与导学

1、什么叫做分式方程?解分式方程的步骤有哪几步?

2、判断下面解方程的过程是否正确,若不正确,请加以改正。

解方程:=3-

解:两边同乘以(x-1),得

2=3-x=1,①

x=3+1-2,②

所以x=2、③

(不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3、)

3、解下列分式方程:(1)=(2)+=2、

二、新课

(一)情境创设:

1、甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

设甲每天加工服装多少件,可得方程:

2、一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

设这个两位数的十位数字是x,可得方程:

3、某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

设自行车的速度为xkm/h,可得方程:

(二)探索活动:

1、上面所得到的方程有什么共同特点?

2、这些方程与整式方程有什么区别?

结论:分母中含有未知数的方程叫做分式方程。

3、如何解分式方程=?

解:这个分式方程的两边同乘各分式的'最简公分母x(x+1),

可以得到一元一次方程:20(x+1)=24x

解这个方程,得

x=5

为了判断x=5是否是原方程的解,我们把x=5代入原方程:

左边==4,右边==4,左边=右边。

x=5是原方程的解。

说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

三、例题教学:

例1、解方程:-=0

板书出解分式方程的一般过程及完整的书写格式。

解:方程两边同乘x(x-2),得

3(x-2)-2x=0

解这个方程,得

x=6

把x=6代入原方程:左边=右边=0,左边=右边。

x=6是原方程的解。

四、课堂练习:

1、下列各式中,分式方程是()

a.b.c.d.

2、分式方程解的情况是()

a.有解,b.有解c.有解,d.无解

3、解下列方程:

4、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

八年级下册数学教案篇2

一、目标要求

1.理解掌握异分母分式加减法法则。

2.能正确熟练地进行异分母分式的加减运算。

二、重点难点

重点:异分母分式的加减法法则及其运用。

难点:正确确定最简公分母和灵活运用法则。

1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

三、解题方法指导

?例1】计算:(1)++;

(2)-x-1;

(3)--。

分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

解:(1)原式=-+=-+====;

(2)原式======;

(3)原式=--===。

?例2】计算:。+++。

分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。

解:原式=++=++=+=+==。

四、激活思维训练

▲知识点:异分母分式的加减

?例】计算:-+。

分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

解:原式=[x+2-]-[x+3+]

+[+1]

=x+2--x-3-++1

=--+=====。

五、基础知识检测

1.填空题:

八年级下册数学教案篇3

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴l和一个点,要画出点a关于l的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件

教学过程:

一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

2.轴对称的三个重要性质______________________________________________

_____________________________________________________________________

二、提出问题:

二、探索练习:

1. 提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2.分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点a,要画出点a关于l的对应点 ,可采用如下方法:`

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1. 如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2. 试画出与线段ab关于直线l的线段

3.如图,已知 直线mn,画出以mn为对称轴 的轴对称图形

小 结: 本节课学习了已知对称轴l和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

八年级下册数学教案篇4

教学目标:

1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。

2、能利用它们的性质和判定进行推理和计算。

3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。

教学重点、难点:

重点:掌握特殊平行四边形性质与判定。

难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。

教学过程:

一、梳理知识:

1.特殊平行四边形的性质.

1)如图所示:在矩形abcd中,对角线ac、bd相交于o点,已知ab=3cm,ac=5cm

则bc=_____cm,△boc的周长=_____cm

2)如图所示:在菱形abcd中,对角线ac、bd相交于o点,已知ab=5cm,ac=6cm,

则你能求出哪些线段的长度?

3)如图所示:在正方形abcd中,对角线ac、bd相交于o点,已知oa=3cm,

则ab=_____cm,△boc的周长=_______cm.

小结:特殊平行四边形的性质(ppt呈现)

2.特殊平行四边形的判定.

要使平行四边形abcd成为矩形,需要增加的条件________.

要使平行四边形abcd成为菱形,需要增加的条件________.

要使矩形abcd成为正方形,需要增加的条件________.

要使菱形abcd成为正方形,需要增加的条件________.

小结:特殊平行四边形的判定(ppt呈现)

二、深化提高:

1.已知:如图,在△abc中,ab=ac,ad⊥bc,垂足为点d,an是△abc外角∠cam的平分线,ce⊥an,垂足为点e,

(1)求证:四边形adce为矩形;

(2)当△abc满足什么条件时,

四边形adce是一个正方形?并给出证明.

2.如图,矩形abcd的对角线ac、bd交于点o,

过点d作dp∥oc,过c点作cp∥do,交dp于点p,

试判断四边形codp的形状.

变式1:如果题目中的矩形变为菱形,(图一)结论应变为什么?

变式2:如果题目中的矩形变为正方形,(图二)结论又应变为什么?

3.如图,在中,是边的中点,分别是及其延长线上的点,.

(1)求证:.

(2)请连结,试判断四边形的形状,并说明理由.

(3)若四边形是菱形,判断的形状。

三、拓展提高

1.如图,以△abc的三边为边在bc的同侧分别作三个等边三角形,即△abd、

△bce、△acf,

(1)四边形adef是什么四边形?并说明理由

(2)当△abc满足什么条件时,四边形adef是菱形?

(3)当△abc满足什么条件时,以a、d、e、f为顶点的四边形不存在.

2.如图,已知⊿abc是等腰三角形,顶角∠bac=,(<60°)d是bc边上的一点,连接ad,线段ad绕点a顺时针旋转到ae,过点e作bc的平行线,交ab于点f,连接de,be,df.

(1)求证:be=cd;

(2)若ad⊥bc,试判断四边形bdfe的形状,并给出证明,

四、课堂小结

五、作业

1.如图,在正方形abcd中,p为对角线bd上一点,

pe⊥bc,垂足为e,pf⊥cd,垂足为f。

求证:ef=ap

2.如图,正方形abcd中,e是对角线bd上的点,且be=ab,

ef⊥bd,交cd于点f,de=2.5cm,求cf的长。

3.如图,四边形abcd是菱形,对角线ac=8cm,bd=6cm,

dh⊥ab于h,求:dh的长。

八年级下册数学教案篇5

教学目标:

1、知识目标:

理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题、

2、能力目标:

通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想、

3、情感目标:

让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度、

教学重点:

平行四边形的性质

教学难点:

理解并应用平行四边形的性质

教学方法:

探究、启发式

教学过程

一、创设情景引入新课

通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习一下平行四边形。

二、判断图形,明确概念

通过一些图片的判断,让学生认识什么样的四边形是平行四边形。

然后让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:

三、平行四边形的画法

让学生自己在练习本上画出平行四边形,老师指导学生完成。

接着老师展示画平行四边形的步骤,并演示给学生看。

四、探究平行四边形的旋转

用一枚图钉在o点穿过,将平行四边形abcd绕点o旋转180,观察旋转后的平行四边形abcd与纸上画的平行四边形efgh是否重合。

让学生讨论,得出结论,教师总结:我们发现,旋转之后的两个平行四边形完全重合,即平行四边形是中心对称图形,对角线的交点o就是对称中心。

五、例题与练习

1、例题1:

如图,已知平行四边形abcd,∠a=40,求其他各个内角的度数。

思路导引:已知一个平行四边形与其中的一个角,由平行四边形的性质可得两邻角互补,

所以∠a+∠d=180,∠a+∠b=180,从而求出∠d和∠b,再求∠c。

2、例题2:已知在平行四边形abcd中,ab=8,周长等于24,求其余三条边的长。

解:∵在平行四边形abcd中,

ab=dc,ad=bc(平行四边形的对边相等)

又∵ab=8

ab+bc+cd+da=24

∴cd=8,ad=bc=4

3、练习

1、在平行四边形abcd中,已知ab=8,ao=3,∠abc=50°

则cd=________,ac=________,

∠bad=________,∠cda=________

2、在平行四边形abcd中,∠a+∠c=150°那么

∠a=__________,∠d=_________

3、在平行四边形abcd中,∠a:∠b=4:5,那么

∠b=__________,∠c=_________

六、小结与作业

这节课你学到了什么?

1、平行四边形的概念

2、平行四边形的性质

3、运用性质解决问题

作业安排

作业

课本43页练习第1题和第2题

八年级下册数学教案篇6

教学目标:

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

二、导入新课:

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = .

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

三、练习

p69练习 1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

p75习题13.1活动第1、2、3题